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:-center modeling

} Input: -, ( ⊆ ℝ3, : ∈ ℕ

} Output: A classification (�, �):

◦ � ⊆ ( and |� | = :

◦ � : - → �

◦ (�, �)minimizes maxG∈- ‖G − �(G)‖?
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State-of-the-art: General Metrics

} NP-hard [FPT81]

} Poly Time 3-approximation (Gonzalez Algorithm)

} NP-Hard to approximate to 3 − >(1) factor! [FPT81]
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Proof Overview: General Metrics
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Proof Overview: General Metrics

Theorem (Fowler-Paterson-Tanimoto’81)
Given input (-, (, :). It is NP-hard to distinguish:
YES: There exists (�∗ , �∗) such that max

G∈-
Δ(G, �∗(G)) ≤ 1

NO: For all (�, �)we have max
G∈-

Δ(G, �(G)) ≥ 3
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State-of-the-art: ℓ? Metrics

} ℓ1 and ℓ∞ metrics

◦ Poly Time 3-approximation

◦ NP-Hard to approximate to 3 − >(1) factor! [FG88]

} Euclidean metric

◦ Poly Time 2.74-approximation! [NSS13]

◦ NP-Hard to approximate to 2.65 factor [FG88]
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Proof Overview: ℓ? Metrics

Vertex Coverage:

} Input: �(+, �), :

} Objective: Max Fraction of � covered by : vertices in +

Theorem (Karp’72)
It is NP-hard to distinguish:
YES: Vertex Coverage is 1
NO: Vertex Coverage is < 1
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Proof Overview: ℓ? Metrics

Theorem (Karp’72)
It is NP-hard to distinguish:
YES: Vertex Coverage is 1
NO: Vertex Coverage is < 1 ⇒

Theorem (Fowler-Paterson-Tanimoto’81)
Fix � > 0. Given input (-, (, :) in ℝ= . It is NP-hard to
distinguish:
YES: There exists (�∗ , �∗) such that max

G∈-
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Proof Overview: ℓ? Metrics

Theorem (Fowler-Paterson-Tanimoto’81)
Fix � > 0. Given input (-, (, :) in ℝ= . It is NP-hard to
distinguish:
YES: There exists (�∗ , �∗) such that max

G∈-
‖G − �∗(G)‖1 ≤ 1

NO: For all (�, �)we have max
G∈-
‖G − �(G)‖1 ≥ 3
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:-means & :-median
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:-means and :-median modeling

} Input: -, ( ⊆ ℝ3, : ∈ ℕ

} Output: A classification (�, �):

◦ � ⊆ ( and |� | = :

◦ � : - → �

◦ :-means: (�, �)minimizes
∑
G∈- ‖G − �(G)‖2?

◦ :-median: (�, �)minimizes
∑
G∈- ‖G − �(G)‖?
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Our Results (Cohen-Addad–K’19,Cohen-Addad–K–Lee’22)

Discrete Version

:-means :-median :-means :-median
(JCH) (JCH) (UGC) (UGC)

ℓ1-metric 3.94 1.73 1.56 1.14

ℓ2-metric 1.73 1.27 1.17 1.06

ℓ∞-metric 3.94 1.73 3.94∗ 1.73∗

Continuous Version

:-means in ℓ2-metric ≈ 1.36 (JCH), 1.07 (UGC)
:-median in ℓ1-metric ≈ 1.36 (JCH), 1.07 (UGC)
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Proof Overview: General Metrics

Theorem (Guha-Khuller’99)
Fix � > 0. Given input (-, (, :). It is NP-hard to distinguish:
YES: There exists (�∗ , �∗) such that

∑
G∈-

Δ(G, �∗(G))2 ≤ |- |

NO: For all (�, �)we have
∑
G∈-

Δ(G, �(G))2 ≥ (1 + 8/4 − �) · |- |

18



Johnson Coverage Hypothesis

(
, C)-Johnson Coverage Problem
Given � ⊆

([=]
C

)
, and : as input, distinguish between:

Completeness: There exists C := {(1 , . . . , (:} ⊆
( [=]
C−1

)
such that

∀) ∈ �, ∃(8 ∈ C, (8 ⊂ ).

Soundness: For every C := {(1 , . . . , (:} ⊆
( [=]
C−1

)
we have

Pr
)∼�
[∃(8 , (8 ⊂ )] ≤ 
.

Johnson Coverage Hypothesis (Cohen-Addad–K–Lee’22)
∀� > 0, ∃C� ∈ ℕ such that (1 − 1

4 + �, C�)-Johnson Coverage
problem is NP-hard.

19
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Embedding in Hamming metric

Theorem (Cohen-Addad–K–Lee’22)
Assuming (
, C)-Johnson coverage problem is NP-hard,

given input -,S⊆ {0, 1}$(log =), it is NP-hard to distinguish:

YES: There exists (�∗ , �∗) such that∑
G∈-
‖G − �∗(G)‖20 ≤ =′,

NO: For all (�, �)we have∑
G∈-
‖G − �(G)‖20 ≥ (1 + 8 · (1 − 
)) · =′.

(0.93,2)

1.56

(1- 1
4 , C)

(
1 + 8

4

)
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Containment Game

( [=]C−1) 3(
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Public Randomness
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Containment Game: Protocols

} Deterministic Protocol:

◦ Message length: $(C log =) bits
◦ Completeness: 1, Soundness: 0

} Randomized Protocol:

◦ Message length: $�,C(1) bits
◦ Completeness: 1, Soundness: �
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Containment Game: Randomized Protocol

} Let C : F log =
@ → F

2·log =
@

} Alice and Bob pick randomly 8 ∈ [2 · log =]

} Bob sends to Alice (8 := {C(D)8 | D ∈ (}

} Alice checks if (8 ⊆ )8 := {C(D)8 | D ∈ )}

} Message length: (C − 1) · log2 @

} Soundness: C · (1 − Δ(C)) ≈ $C(1/
√
@) (for AG codes)
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Embedding Transcript into Hamming metric

} Construct � : 2[=] → {0, 1}@·2·log =

} Fix 8 ∈ [2 · log =] and ( ∈ 2[=]

:

�(()8 = 4(8 , where (8 = {C(D)8 | D ∈ (} ⊆ [@]

} - = {�()) | ) ∈ �}

} S=

{
�(()

�� ( ∈ ( [=]
C−1

)}
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Structural Observations
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Completeness of Reduction

} S′ := {(1 , . . . , (:} ⊆
( [=]
C−1

)
be a cover of � ⊆

([=]
C

)

} Build � : - → � ⊆ S:

�(�())) = �((8), where (8 ⊂ )

} Fix ) ∈ � and 8 ∈ [2 · log =]

Distance between �()) and �(�())) on block 8 is 1

} :-means objective is:∑
G∈-
‖(G − �(G)‖20 = (2 · log =)2 · |- |

27
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Soundness of Reduction

} � : - → � ⊆ S is some classification

} Build S′ ⊆
( [=]
C−1

)
of size ::

( ∈ S′⇐⇒ �(() ∈ �

} ∃�′ ⊆ �, s.t. ∀) ∈ �′, ) does not contain any subset in S′

} Fix �()) ∈ -�′ and 8 ∈ [2 · log =]

Distance between �()) and �(�())) on block 8 is mostly 3

} :-means objective is:∑
G∈-
‖(G − �(G)‖20 = (2 · log =)2 · |- \ -�′ | + 9·(2 · log =)2 · |-�′ |
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Our Embedding in Hamming metric

Theorem (Cohen-Addad–K–Lee’22)
Assuming (
, C)-Johnson coverage problem is NP-hard,

given input -,S⊆ {0, 1}$(log =), it is NP-hard to distinguish:

YES: There exists (�∗ , �∗) such that∑
G∈-
‖(G − �∗(G)‖20 ≤ =′,

NO: For all (�, �)we have∑
G∈-
‖(G − �(G)‖20 ≥ (1 + 8 · (1 − 
)) · =′.
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Our Results (Cohen-Addad–K’19,Cohen-Addad–K–Lee’22)

Discrete Version

:-means :-median :-means :-median
(JCH) (JCH) (UGC) (UGC)

ℓ1-metric 3.94 1.73 1.56 1.14

ℓ2-metric 1.73 1.27 1.17 1.06

ℓ∞-metric 3.94 1.73 3.94∗ 1.73∗

Continuous Version

:-means in ℓ2-metric ≈ 1.36 (JCH), 1.07 (UGC)
:-median in ℓ1-metric ≈ 1.36 (JCH), 1.07 (UGC)
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Johnson Coverage Hypothesis: Discussion

} C = 2: Vertex Coverage problem

◦ ≈0.9292 gap is tight!

} Pick C := {(1 , . . . , (:} ⊆
([=]

1
)
: Max Coverage problem

◦ As C increases, gap approaches 1 − 1
4

} LP Integrality gap:

Determine smallest collection in
( [=]
C−1

)
that hits all of

([=]
C

)
◦ Hypergraph Turán number: Open since 1940s!

◦ Recently resolved for C = 3

◦ Improved SDP gaps for Clustering

31



Johnson Coverage Hypothesis: Discussion

} C = 2: Vertex Coverage problem
◦ ≈0.9292 gap is tight!

} Pick C := {(1 , . . . , (:} ⊆
([=]

1
)
: Max Coverage problem

◦ As C increases, gap approaches 1 − 1
4

} LP Integrality gap:

Determine smallest collection in
( [=]
C−1

)
that hits all of

([=]
C

)
◦ Hypergraph Turán number: Open since 1940s!

◦ Recently resolved for C = 3

◦ Improved SDP gaps for Clustering

31



Johnson Coverage Hypothesis: Discussion

} C = 2: Vertex Coverage problem
◦ ≈0.9292 gap is tight!

} Pick C := {(1 , . . . , (:} ⊆
([=]

1
)
: Max Coverage problem

◦ As C increases, gap approaches 1 − 1
4

} LP Integrality gap:

Determine smallest collection in
( [=]
C−1

)
that hits all of

([=]
C

)
◦ Hypergraph Turán number: Open since 1940s!

◦ Recently resolved for C = 3

◦ Improved SDP gaps for Clustering

31



Johnson Coverage Hypothesis: Discussion

} C = 2: Vertex Coverage problem
◦ ≈0.9292 gap is tight!

} Pick C := {(1 , . . . , (:} ⊆
([=]

1
)
: Max Coverage problem

◦ As C increases, gap approaches 1 − 1
4

} LP Integrality gap:

Determine smallest collection in
( [=]
C−1

)
that hits all of

([=]
C

)
◦ Hypergraph Turán number: Open since 1940s!

◦ Recently resolved for C = 3

◦ Improved SDP gaps for Clustering

31



Johnson Coverage Hypothesis: Discussion

} C = 2: Vertex Coverage problem
◦ ≈0.9292 gap is tight!

} Pick C := {(1 , . . . , (:} ⊆
([=]

1
)
: Max Coverage problem

◦ As C increases, gap approaches 1 − 1
4

} LP Integrality gap:

Determine smallest collection in
( [=]
C−1

)
that hits all of

([=]
C

)

◦ Hypergraph Turán number: Open since 1940s!

◦ Recently resolved for C = 3

◦ Improved SDP gaps for Clustering

31



Johnson Coverage Hypothesis: Discussion

} C = 2: Vertex Coverage problem
◦ ≈0.9292 gap is tight!

} Pick C := {(1 , . . . , (:} ⊆
([=]

1
)
: Max Coverage problem

◦ As C increases, gap approaches 1 − 1
4

} LP Integrality gap:

Determine smallest collection in
( [=]
C−1

)
that hits all of

([=]
C

)
◦ Hypergraph Turán number: Open since 1940s!

◦ Recently resolved for C = 3

◦ Improved SDP gaps for Clustering

31



Johnson Coverage Hypothesis: Discussion

} C = 2: Vertex Coverage problem
◦ ≈0.9292 gap is tight!

} Pick C := {(1 , . . . , (:} ⊆
([=]

1
)
: Max Coverage problem

◦ As C increases, gap approaches 1 − 1
4

} LP Integrality gap:

Determine smallest collection in
( [=]
C−1

)
that hits all of

([=]
C

)
◦ Hypergraph Turán number: Open since 1940s!

◦ Recently resolved for C = 3

◦ Improved SDP gaps for Clustering

31



Johnson Coverage Hypothesis: What can we show?

} C = 2: Vertex Coverage problem

◦ ≈0.9292 gap is tight!

} 3-Hypergraph Vertex Coverage problem is NP-Hard to
approximate to a factor of 7/8
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Key Takeaways

} Improved Inapproximability of

} :-means and :-median

} In ℓ?-metrics

} Using Transcript of Containment Protocol

} And Geometric Realization of Johnson Graphs

Open: Is JCH true?
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State-of-the-art for :-means

Discrete Version

JCH UGC NP≠P

ℓ1-metric 3.94 1.56 1.38

ℓ2-metric 1.73 1.17 1.17

ℓ∞-metric 3.94 3.94 3.94

Continuous Version

General metric ≈ 4 (NP≠P)

ℓ2-metric ≈ 1.36 (JCH), 1.07 (UGC), 1.06 (NP≠P)

ℓ1-metric ≈ 2.10 (JCH), 1.16 (NP≠P)

ℓ∞-metric ≈ ???
35



Inapproximability of Clustering in Euclidean metrics

([=]
C

)
( [=]
C−1

)

([=]
C

)
( [=]
C−1

)

1 √
3

Points in {0, 1}3

Is there a better embedding of the Johnson Graph
into the Euclidean metric?
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Inapproximability of Clustering in Euclidean metrics

Tight inapproximability of :-center in Euclidean metrics?
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Other Open Problems

Can we prove strong inapproximability results for:

} :-minsum in ℓ?-metrics

} Capacitated Clustering

} Fair Clustering
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THANK
YOU!
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