Hardness of Approximation for Metric Clustering

Karthik C. S.

(Rutgers University)
March $5^{\text {th }} 2022$

00

Spectrum of Computational Problems

Structure

Spectrum of Computational Problems

Spectrum of Computational Problems

k-center

k-center modeling

© Input: $X, S \subseteq \mathbb{R}^{d}, k \in \mathbb{N}$
© Output: A classification (C, σ) :

- $C \subseteq S$ and $|C|=k$
- $\sigma: X \rightarrow C$
- (C, σ) minimizes $\max _{x \in X}\|x-\sigma(x)\|_{p}$

State-of-the-art: General Metrics

© NP-hard [FPT81]
© Poly Time 3-approximation (Gonzalez Algorithm)
© NP-Hard to approximate to $3-o(1)$ factor! [FPT81]

Proof Overview: General Metrics

Proof Overview: General Metrics

Theorem (Fowler-Paterson-Tanimoto'81)

Given input (X, S, k). It is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\max _{x \in X} \Delta\left(x, \sigma^{*}(x)\right) \leq 1$
NO: For all (C, σ) we have $\max \Delta(x, \sigma(x)) \geq 3$

$$
x \in X
$$

State-of-the-art: ℓ_{p} Metrics

(0) ℓ_{1} and ℓ_{∞} metrics

- Poly Time 3-approximation
- NP-Hard to approximate to $3-o(1)$ factor! [FG88]
© Euclidean metric
- Poly Time 2.74-approximation! [NSS13]
- NP-Hard to approximate to 2.65 factor [FG88]

Proof Overview: ℓ_{p} Metrics

Vertex Coverage:
© Input: $G(V, E), k$

Proof Overview: ℓ_{p} Metrics

Vertex Coverage:
© Input: $G(V, E), k$
© Objective: Max Fraction of E covered by k vertices in V

Proof Overview: ℓ_{p} Metrics

Vertex Coverage:
© Input: $G(V, E), k$
© Objective: Max Fraction of E covered by k vertices in V

Theorem (Karp’72)

It is NP-hard to distinguish:

Vertex Coverage:
© Input: $G(V, E), k$
© Objective: Max Fraction of E covered by k vertices in V

Theorem (Karp'72)

It is NP-hard to distinguish:
YES: Vertex Coverage is 1

Vertex Coverage:
© Input: $G(V, E), k$
© Objective: Max Fraction of E covered by k vertices in V

Theorem (Karp'72)

It is NP-hard to distinguish:
YES: Vertex Coverage is 1
NO: Vertex Coverage is <1

Proof Overview: ℓ_{p} Metrics

Theorem (Karp'72)
It is NP-hard to distinguish:
YES: Vertex Coverage is 1
NO: Vertex Coverage is < 1

Proof Overview: ℓ_{p} Metrics

Theorem (Karp'72)

It is NP-hard to distinguish:
YES: Vertex Coverage is 1
NO: Vertex Coverage is <1

Theorem (Fowler-Paterson-Tanimoto'81)

Fix $\varepsilon>0$. Given input (X, S, k) in \mathbb{R}^{n}. It is NP-hard to distinguish:

YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\max _{x \in X}\left\|x-\sigma^{*}(x)\right\|_{1} \leq 1$ $x \in X$
NO: For all (C, σ) we have $\max \|x-\sigma(x)\|_{1} \geq 3$

$$
x \in X
$$

Graph Embedding

Graph Embedding

Points in $\{0,1\}^{n}$

Graph Embedding

Points in $\{0,1\}^{n}$

Theorem (Fowler-Paterson-Tanimoto'81)

Fix $\varepsilon>0$. Given input (X, S, k) in \mathbb{R}^{n}. It is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\max _{x \in X}\left\|x-\sigma^{*}(x)\right\|_{1} \leq 1$
NO: For all (C, σ) we have $\max _{x \in X}\|x-\sigma(x)\|_{1} \geq 3$

$$
x \in X
$$

k-means \& k-median

k-means and k-median modeling

๑ Input: $X, S \subseteq \mathbb{R}^{d}, k \in \mathbb{N}$
© Output: A classification (C, σ):

- $C \subseteq S$ and $|C|=k$
- $\sigma: X \rightarrow C$
- k-means: (C, σ) minimizes $\sum_{x \in X}\|x-\sigma(x)\|_{p}^{2}$
- k-median: (C, σ) minimizes $\sum_{x \in X}\|x-\sigma(x)\|_{p}$

Our Results (Cohen-Addad-K'19,Cohen-Addad-K-Lee'22)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_{1}-metric	3.94	1.73	1.56	1.14
ℓ_{2}-metric	1.73	1.27	1.17	1.06
ℓ_{∞}-metric	3.94	1.73	3.94^{*}	1.73^{*}

Continuous Version

$$
\begin{aligned}
& k \text {-means in } \ell_{2} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC}) \\
& k \text {-median in } \ell_{1} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC})
\end{aligned}
$$

Proof Overview: General Metrics

Proof Overview: General Metrics

Max Coverage

Proof Overview: General Metrics

Max Coverage

Proof Overview: General Metrics

Theorem (Guha-Khuller'99)

Fix $\varepsilon>0$. Given input (X, S, k). It is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \Delta\left(x, \sigma^{*}(x)\right)^{2} \leq|X|$
NO: For all (C, σ) we have $\sum_{x \in X} \Delta(x, \sigma(x))^{2} \geq(1+8 / e-\varepsilon) \cdot|X|$

Johnson Coverage Hypothesis

(α, t)-Johnson Coverage Problem

Given $E \subseteq\binom{[n]}{t}$, and k as input, distinguish between:
Completeness: There exists $\mathscr{C}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{t-1}$ such that

$$
\forall T \in E, \exists S_{i} \in \mathscr{C}, S_{i} \subset T .
$$

Soundness: For every $\mathscr{C}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{t-1}$ we have

$$
\operatorname{Pr}_{T \sim E}\left[\exists S_{i}, S_{i} \subset T\right] \leq \alpha .
$$

Johnson Coverage Hypothesis

(α, t)-Johnson Coverage Problem

Given $E \subseteq\binom{[n]}{t}$, and k as input, distinguish between:
Completeness: There exists $\mathscr{C}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{t-1}$ such that

$$
\forall T \in E, \exists S_{i} \in \mathscr{C}, S_{i} \subset T
$$

Soundness: For every $\mathscr{C}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{t-1}$ we have

$$
\operatorname{Pr}_{T \sim E}\left[\exists S_{i}, S_{i} \subset T\right] \leq \alpha .
$$

Johnson Coverage Hypothesis (Cohen-Addad-K-Lee'22)

$\forall \varepsilon>0, \exists t_{\varepsilon} \in \mathbb{N}$ such that $\left(1-\frac{1}{e}+\varepsilon, t_{\varepsilon}\right)$-Johnson Coverage problem is NP-hard.

Embedding in Hamming metric

Theorem (Cohen-Addad-K-Lee'22)

Assuming (α, t)-Johnson coverage problem is NP-hard, given input $X, \mathcal{S} \subseteq\{0,1\}^{O(\log n)}$, it is NP-hard to distinguish:

Embedding in Hamming metric

Theorem (Cohen-Addad-K-Lee'22)

Assuming (α, t)-Johnson coverage problem is NP-hard, given input $X, \mathcal{S} \subseteq\{0,1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that

$$
\sum_{x \in X}\left\|x-\sigma^{*}(x)\right\|_{0}^{2} \leq n^{\prime}
$$

Embedding in Hamming metric

Theorem (Cohen-Addad-K-Lee'22)

Assuming (α, t)-Johnson coverage problem is NP-hard, given input $X, \delta \subseteq\{0,1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that

$$
\sum_{x \in X}\left\|x-\sigma^{*}(x)\right\|_{0}^{2} \leq n^{\prime}
$$

NO: For all (C, σ) we have

$$
\sum_{x \in X}\|x-\sigma(x)\|_{0}^{2} \geq(1+8 \cdot(1-\alpha)) \cdot n^{\prime}
$$

Embedding in Hamming metric

Theorem (Cohen-Addad-K-Lee'22)

Assuming $\left(1-\frac{1}{e}, t\right)$ Johnson coverage problem is NP-hard, given input $X, \mathcal{S} \subseteq\{0,1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that

$$
\sum_{x \in X}\left\|x-\sigma^{*}(x)\right\|_{0}^{2} \leq n^{\prime}
$$

NO: For all (C, σ) we have

$$
\sum_{x \in X}\|x-\sigma(x)\|_{0}^{2} \geq(1+8 \cdot(1-\alpha)) \cdot n^{\prime}
$$

Embedding in Hamming metric

Theorem (Cohen-Addad-K-Lee'22)

Assuming $\left(1-\frac{1}{e}, t\right)$ Johnson coverage problem is NP-hard, given input $X, \delta \subseteq\{0,1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that

$$
\sum_{x \in X}\left\|x-\sigma^{*}(x)\right\|_{0}^{2} \leq n^{\prime}
$$

NO: For all (C, σ) we have

$$
\sum_{x \in X}\|x-\sigma(x)\|_{0}^{2} \geq \quad\left(1+\frac{8}{e}\right) \cdot n^{\prime}
$$

Embedding in Hamming metric

Theorem (Cohen-Addad-K-Lee'22)

Assuming (α, t)-Johnson coverage problem is NP-hard, given input $X, \delta \subseteq\{0,1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that

$$
\sum_{x \in X}\left\|x-\sigma^{*}(x)\right\|_{0}^{2} \leq n^{\prime}
$$

NO: For all (C, σ) we have

$$
\sum_{x \in X}\|x-\sigma(x)\|_{0}^{2} \geq(1+8 \cdot(1-\alpha)) \cdot n^{\prime}
$$

Embedding in Hamming metric

Theorem (Cohen-Addad-K-Lee'22)

Assuming (0.93,2) Johnson coverage problem is NP-hard, given input $X, \delta \subseteq\{0,1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that

$$
\sum_{x \in X}\left\|x-\sigma^{*}(x)\right\|_{0}^{2} \leq n^{\prime}
$$

NO: For all (C, σ) we have

$$
\sum_{x \in X}\|x-\sigma(x)\|_{0}^{2} \geq(1+8 \cdot(1-\alpha)) \cdot n^{\prime}
$$

Embedding in Hamming metric

Theorem (Cohen-Addad-K-Lee'22)

Assuming (0.93,2) Johnson coverage problem is NP-hard, given input $X, \delta \subseteq\{0,1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that

$$
\sum_{x \in X}\left\|x-\sigma^{*}(x)\right\|_{0}^{2} \leq n^{\prime}
$$

NO: For all (C, σ) we have

$$
\sum_{x \in X}\|x-\sigma(x)\|_{0}^{2} \geq \quad 1.56 \quad \cdot n^{\prime}
$$

Johnson Graph Embedding

Johnson Graph Embedding

Points in $\{0,1\}^{n}$

Johnson Graph Embedding

Points in $\{0,1\}^{n}$

Containment Game

Containment Game

Containment Game

Containment Game

Public Randomness

Containment Game

Public Randomness

GOAL

Determine if $S \subset T$

Containment Game: Protocols

© Deterministic Protocol:

- Message length: $O(t \log n)$ bits
- Completeness: 1 , Soundness: o

Containment Game: Protocols

© Deterministic Protocol:

- Message length: $O(t \log n)$ bits
- Completeness: 1 , Soundness: o
© Randomized Protocol:
- Message length: $O_{\varepsilon, t}(1)$ bits

Containment Game: Protocols

© Deterministic Protocol:

- Message length: $O(t \log n)$ bits
- Completeness: 1 , Soundness: o
© Randomized Protocol:
- Message length: $O_{\varepsilon, t}(1)$ bits
- Completeness: 1 , Soundness: ε

Containment Game: Randomized Protocol

() Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$

Containment Game: Randomized Protocol

© Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$
© Alice and Bob pick randomly $i \in[c \cdot \log n]$
© Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$
© Alice and Bob pick randomly $i \in[c \cdot \log n]$
© Bob sends to Alice $S_{i}:=\left\{\mathscr{C}(u)_{i} \mid u \in S\right\}$
© Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$
© Alice and Bob pick randomly $i \in[c \cdot \log n]$
(0) Bob sends to Alice $S_{i}:=\left\{\mathscr{C}(u)_{i} \mid u \in S\right\}$
(० Alice checks if $S_{i} \subseteq T_{i}:=\left\{\mathscr{C}(u)_{i} \mid u \in T\right\}$
© Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$
© Alice and Bob pick randomly $i \in[c \cdot \log n]$
(0) Bob sends to Alice $S_{i}:=\left\{\mathscr{C}(u)_{i} \mid u \in S\right\}$
(० Alice checks if $S_{i} \subseteq T_{i}:=\left\{\mathscr{C}(u)_{i} \mid u \in T\right\}$
© Message length: $(t-1) \cdot \log _{2} q$
© Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$
© Alice and Bob pick randomly $i \in[c \cdot \log n]$
(0) Bob sends to Alice $S_{i}:=\left\{\mathscr{C}(u)_{i} \mid u \in S\right\}$
(० Alice checks if $S_{i} \subseteq T_{i}:=\left\{\mathscr{C}(u)_{i} \mid u \in T\right\}$
© Message length: $(t-1) \cdot \log _{2} q$
© Soundness: $t \cdot(1-\Delta(\mathscr{C}))$
© Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$
© Alice and Bob pick randomly $i \in[c \cdot \log n]$
© Bob sends to Alice $S_{i}:=\left\{\mathscr{C}(u)_{i} \mid u \in S\right\}$
(० Alice checks if $S_{i} \subseteq T_{i}:=\left\{\mathscr{C}(u)_{i} \mid u \in T\right\}$
© Message length: $(t-1) \cdot \log _{2} q$
© Soundness: $t \cdot(1-\Delta(\mathscr{C})) \approx O_{t}(1 / \sqrt{q})$ (for AG codes)

Embedding Transcript into Hamming metric

© Construct $\tau: 2^{[n]} \rightarrow\{0,1\}^{q \cdot c \cdot \log n}$

Embedding Transcript into Hamming metric

© Construct $\tau: 2^{[n]} \rightarrow\{0,1\}^{q \cdot c \cdot \log n}$
(0) Fix $i \in[c \cdot \log n]$ and $S \in 2^{[n]}$:

Embedding Transcript into Hamming metric

© Construct $\tau: 2^{[n]} \rightarrow\{0,1\}^{q \cdot c \cdot \log n}$
(0) Fix $i \in[c \cdot \log n]$ and $S \in 2^{[n]}$:

$$
\tau(S)_{i}=e_{S_{i}}, \text { where } S_{i}=\left\{\mathscr{C}(u)_{i} \mid u \in S\right\} \subseteq[q]
$$

Embedding Transcript into Hamming metric

© Construct $\tau: 2^{[n]} \rightarrow\{0,1\}^{q \cdot c \cdot \log n}$
(0) Fix $i \in[c \cdot \log n]$ and $S \in 2^{[n]}$:

$$
\begin{gathered}
\tau(S)_{i}=e_{S_{i}}, \quad \text { where } S_{i}=\left\{\mathscr{C}(u)_{i} \mid u \in S\right\} \subseteq[q] \\
\begin{array}{c}
S=\{1,2, \ldots, t\} \subset[n] \\
S_{1}=\{1,2, \ldots, t\} \subset[q]
\end{array} \\
S_{i}=\{1,2, \ldots, t / 2, q-\uparrow / 2+1, \ldots, q\} \subset[q] \\
\vdots \\
1 \\
1
\end{gathered}
$$

Embedding Transcript into Hamming metric

© Construct $\tau: 2^{[n]} \rightarrow\{0,1\}^{q \cdot c \cdot \log n}$
(0) Fix $i \in[c \cdot \log n]$ and $S \in 2^{[n]}$:

$$
\tau(S)_{i}=e_{S_{i}}, \text { where } S_{i}=\left\{\mathscr{C}(u)_{i} \mid u \in S\right\} \subseteq[q]
$$

© $X=\{\tau(T) \mid T \in E\}$

Embedding Transcript into Hamming metric

© Construct $\tau: 2^{[n]} \rightarrow\{0,1\}^{q \cdot c \cdot \log n}$
(0) Fix $i \in[c \cdot \log n]$ and $S \in 2^{[n]}$:

$$
\tau(S)_{i}=e_{S_{i}}, \text { where } S_{i}=\left\{\mathscr{C}(u)_{i} \mid u \in S\right\} \subseteq[q]
$$

© $X=\{\tau(T) \mid T \in E\}$
© $\mathcal{S}=\left\{\tau(S) \left\lvert\, S \in\binom{[n]}{t-1}\right.\right\}$

Structural Observations

Suppose $S \subset T$
For every block i, we have $S_{i} \subset T_{i}$

$$
S_{i}=\{1,2, \ldots, t / 2, q-t / 2+1, \ldots, q\} \subset[q] \quad T_{i}=S_{i} \cup\{t+1\} \subset[q]
$$

1	1
!	:
1	1
0	0
!	:
0	0
0	1
0	0
!	:
0	0
1	1
!	!
1	1

Structural Observations

Suppose $S \not \ddagger T$

For most blocks i, we have $S_{i} \notin T_{i}$

$S_{i} \backslash T_{i}=\{q\}$	$T_{i} \backslash S_{i}=\{t+1, t+2\}$
1	1
:	:
1	1
0	0
!	!
0	0
0	---- 1
0	--- 1
0	0
:	:
0	0
1	1
:	:
1	1
1	--- 0

$$
\left|\tau\left(T _i\right)-\tau\left(S _i\right)\right| \geq 3
$$

Completeness of Reduction

© $\delta^{\prime}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{t-1}$ be a cover of $E \subseteq\binom{[n]}{t}$

Completeness of Reduction

(0) $\delta^{\prime}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{t-1}$ be a cover of $E \subseteq\binom{[n]}{t}$
© Build $\sigma: X \rightarrow C \subseteq \delta:$

Completeness of Reduction

© $\delta^{\prime}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{t-1}$ be a cover of $E \subseteq\binom{[n]}{t}$
© Build $\sigma: X \rightarrow C \subseteq \delta$:

$$
\sigma(\tau(T))=\tau\left(S_{i}\right), \text { where } S_{i} \subset T
$$

Completeness of Reduction

© $\delta^{\prime}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{t-1}$ be a cover of $E \subseteq\binom{[n]}{t}$
© Build $\sigma: X \rightarrow C \subseteq \delta$:

$$
\sigma(\tau(T))=\tau\left(S_{i}\right), \text { where } S_{i} \subset T
$$

© Fix $T \in E$ and $i \in[c \cdot \log n]$

Distance between $\tau(T)$ and $\sigma(\tau(T))$ on block i is 1

Completeness of Reduction

© $\delta^{\prime}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{t-1}$ be a cover of $E \subseteq\binom{[n]}{t}$
© Build $\sigma: X \rightarrow C \subseteq \delta$:

$$
\sigma(\tau(T))=\tau\left(S_{i}\right) \text {, where } S_{i} \subset T
$$

© Fix $T \in E$ and $i \in[c \cdot \log n]$

Distance between $\tau(T)$ and $\sigma(\tau(T))$ on block i is 1
© k-means objective is:

$$
\sum_{x \in X} \|\left(x-\sigma(x) \|_{0}^{2}=(c \cdot \log n)^{2} \cdot|X|\right.
$$

Soundness of Reduction

© $\sigma: X \rightarrow C \subseteq \mathcal{S}$ is some classification

Soundness of Reduction

© $\sigma: X \rightarrow C \subseteq \delta$ is some classification
(Build $\delta^{\prime} \subseteq\binom{[n]}{t-1}$ of size k :

$$
S \in \delta^{\prime} \Longleftrightarrow \tau(S) \in C
$$

Soundness of Reduction

© $\sigma: X \rightarrow C \subseteq \delta$ is some classification
© Build $\delta^{\prime} \subseteq\binom{[n]}{t-1}$ of size k :

$$
S \in \delta^{\prime} \Longleftrightarrow \tau(S) \in C
$$

© $\exists E^{\prime} \subseteq E$, s.t. $\forall T \in E^{\prime}, T$ does not contain any subset in δ^{\prime}

Soundness of Reduction

© $\sigma: X \rightarrow C \subseteq \delta$ is some classification
() Build $\delta^{\prime} \subseteq\binom{[n]}{t-1}$ of size k :

$$
S \in \delta^{\prime} \Longleftrightarrow \tau(S) \in C
$$

© $\exists E^{\prime} \subseteq E$, s.t. $\forall T \in E^{\prime}, T$ does not contain any subset in δ^{\prime}
© $\operatorname{Fix} \tau(T) \in X_{E^{\prime}}$ and $i \in[c \cdot \log n]$

Distance between $\tau(T)$ and $\sigma(\tau(T))$ on block i is mostly 3
© $\sigma: X \rightarrow C \subseteq \mathcal{S}$ is some classification
() Build $\delta^{\prime} \subseteq\binom{[n]}{t-1}$ of size k :

$$
S \in \delta^{\prime} \Longleftrightarrow \tau(S) \in C
$$

© $\exists E^{\prime} \subseteq E$, s.t. $\forall T \in E^{\prime}, T$ does not contain any subset in δ^{\prime}
© $\operatorname{Fix} \tau(T) \in X_{E^{\prime}}$ and $i \in[c \cdot \log n]$

Distance between $\tau(T)$ and $\sigma(\tau(T))$ on block i is mostly 3
© k-means objective is:

$$
\sum_{x \in X} \|\left(x-\sigma(x) \|_{0}^{2}=(c \cdot \log n)^{2} \cdot\left|X \backslash X_{E^{\prime}}\right|+9 \cdot(c \cdot \log n)^{2} \cdot\left|X_{E^{\prime}}\right|\right.
$$

Our Embedding in Hamming metric

Theorem (Cohen-Addad-K-Lee'22)

Assuming (α, t)-Johnson coverage problem is NP-hard, given input $X, \delta \subseteq\{0,1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that

$$
\sum_{x \in X} \|\left(x-\sigma^{*}(x) \|_{0}^{2} \leq n^{\prime}\right.
$$

NO: For all (C, σ) we have

$$
\sum_{x \in X} \|\left(x-\sigma(x) \|_{0}^{2} \geq(1+8 \cdot(1-\alpha)) \cdot n^{\prime}\right.
$$

Our Results (Cohen-Addad-K'19,Cohen-Addad-K-Lee'22)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_{1}-metric	3.94	1.73	1.56	1.14
ℓ_{2}-metric	1.73	1.27	1.17	1.06
ℓ_{∞}-metric	3.94	1.73	3.94^{*}	1.73^{*}

Continuous Version

$$
\begin{aligned}
& k \text {-means in } \ell_{2} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC}) \\
& k \text {-median in } \ell_{1} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC})
\end{aligned}
$$

Our Results (Cohen-Addad-K'19,Cohen-Addad-K-Lee'22)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_{1}-metric	3.94	1.73	1.56	1.14
ℓ_{2}-metric	1.73	1.27	1.17	1.06
ℓ_{∞}-metric	3.94	1.73	3.94^{*}	1.73^{*}

Continuous Version

$$
\begin{aligned}
& k \text {-means in } \ell_{2} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC}) \\
& k \text {-median in } \ell_{1} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07 \text { (UGC) }
\end{aligned}
$$

Our Results (Cohen-Addad-K'19,Cohen-Addad-K-Lee'22)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_{1}-metric	3.94	1.73	1.56	1.14
ℓ_{2}-metric	1.73	1.27	1.17	1.06
ℓ_{∞}-metric	3.94	1.73	3.94^{*}	1.73^{*}

k-means in ℓ_{2}-metric ≈ 1.36 (JCH), 1.07 (UGC)
k-median in ℓ_{1}-metric ≈ 1.36 (JCH), 1.07 (UGC)

Our Results (Cohen-Addad-K'19,Cohen-Addad-K-Lee'22)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_{1}-metric	3.94	1.73	1.56	1.14
ℓ_{2}-metric	1.73	1.27	1.17	1.06
ℓ_{∞}-metric	3.94	1.73	3.94^{*}	1.73^{*}

Continuous Version | Use Feige's |
| :---: |
| Instance |

[^0]
Johnson Coverage Hypothesis: Discussion

© $t=2$: Vertex Coverage problem

Johnson Coverage Hypothesis: Discussion

© $t=2$: Vertex Coverage problem

- ≈ 0.9292 gap is tight!

Johnson Coverage Hypothesis: Discussion

© $t=2$: Vertex Coverage problem

- ≈ 0.9292 gap is tight!

○ Pick $\mathscr{C}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{1}:$ Max Coverage problem

Johnson Coverage Hypothesis: Discussion

© $t=2$: Vertex Coverage problem

- ≈ 0.9292 gap is tight!
© Pick $\mathscr{C}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{1}$: Max Coverage problem
- As t increases, gap approaches $1-\frac{1}{e}$

Johnson Coverage Hypothesis: Discussion

© $t=2$: Vertex Coverage problem

- ≈ 0.9292 gap is tight!

○ Pick $\mathscr{C}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{1}$: Max Coverage problem

- As t increases, gap approaches $1-\frac{1}{e}$
© LP Integrality gap:

Determine smallest collection in $\binom{[n]}{t-1}$ that hits all of $\binom{[n]}{t}$

Johnson Coverage Hypothesis: Discussion

© $t=2$: Vertex Coverage problem

- ≈ 0.9292 gap is tight!

○ Pick $\mathscr{C}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{1}$: Max Coverage problem

- As t increases, gap approaches $1-\frac{1}{e}$
© LP Integrality gap:

Determine smallest collection in $\binom{[n]}{t-1}$ that hits all of $\binom{[n]}{t}$

- Hypergraph Turán number: Open since 1940s!

Johnson Coverage Hypothesis: Discussion

© $t=2$: Vertex Coverage problem

- ≈ 0.9292 gap is tight!

○ Pick $\mathscr{C}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{1}$: Max Coverage problem

- As t increases, gap approaches $1-\frac{1}{e}$
© LP Integrality gap:

Determine smallest collection in $\binom{[n]}{t-1}$ that hits all of $\binom{[n]}{t}$

- Hypergraph Turán number: Open since 1940s!
- Recently resolved for $t=3$
- Improved SDP gaps for Clustering

Johnson Coverage Hypothesis: What can we show?

๑ $t=2$: Vertex Coverage problem

Johnson Coverage Hypothesis: What can we show?

© $t=2$: Vertex Coverage problem

- ≈ 0.9292 gap is tight!

Johnson Coverage Hypothesis: What can we show?

© $t=2$: Vertex Coverage problem

- ≈ 0.9292 gap is tight!
© 3-Hypergraph Vertex Coverage problem is NP-Hard to approximate to a factor of $7 / 8$

Key Takeaways

© Improved Inapproximability of

Key Takeaways

© Improved Inapproximability of
© k-means and k-median

Key Takeaways

© Improved Inapproximability of
© k-means and k-median
© In ℓ_{p}-metrics

Key Takeaways

© Improved Inapproximability of
© k-means and k-median
© In ℓ_{p}-metrics
© Using Transcript of Containment Protocol

Key Takeaways

© Improved Inapproximability of
© k-means and k-median
© In ℓ_{p}-metrics
© Using Transcript of Containment Protocol
© And Geometric Realization of Johnson Graphs

Key Takeaways

© Improved Inapproximability of
© k-means and k-median
© In ℓ_{p}-metrics
© Using Transcript of Containment Protocol
© And Geometric Realization of Johnson Graphs

Open: Is JCH true?

O
 PROBLEMS
 E
 N

State-of-the-art for k-means

Discrete Version

	JCH	UGC	NP $\neq \mathrm{P}$
ℓ_{1}-metric	3.94	1.56	1.38
ℓ_{2}-metric	1.73	1.17	1.17
ℓ_{∞}-metric	3.94	3.94	3.94

Continuous Version

General metric $\approx 4(\mathrm{NP} \neq \mathrm{P})$
ℓ_{2}-metric ≈ 1.36 (JCH), 1.07 (UGC), $1.06(\mathrm{NP} \neq \mathrm{P})$

$$
\ell_{1} \text {-metric } \approx 2.10(\mathrm{JCH}), 1.16(\mathrm{NP} \neq \mathrm{P})
$$

$$
\ell_{\infty} \text {-metric } \approx ? ? ?
$$

Inapproximability of Clustering in Euclidean metrics

Inapproximability of Clustering in Euclidean metrics

Points in $\{0,1\}^{d}$

Inapproximability of Clustering in Euclidean metrics

Points in $\{0,1\}^{d}$

Inapproximability of Clustering in Euclidean metrics

Points in $\{0,1\}^{d}$

Is there a better embedding of the Johnson Graph into the Euclidean metric?

Inapproximability of Clustering in Euclidean metrics

Tight inapproximability of k-center in Euclidean metrics?

Other Open Problems

Can we prove strong inapproximability results for:

Other Open Problems

Can we prove strong inapproximability results for:
๑ k-minsum in ℓ_{p}-metrics

Other Open Problems

Can we prove strong inapproximability results for:
๑ k-minsum in ℓ_{p}-metrics
© Capacitated Clustering

Other Open Problems

Can we prove strong inapproximability results for:
๑ k-minsum in ℓ_{p}-metrics
© Capacitated Clustering
๑ Fair Clustering

THANK
 YOU!

[^0]: k-means in ℓ_{2}-metric $\approx 1.36(\mathrm{JCH}), 1.07$ (UGC) Decoding k-median in ℓ_{1}-metric $\approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC}) \quad$ Vertex Cover

