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k-center modeling

© Input: X,S CR% k e N

© Output: A classification (C, 0):

o CcCS and |C|=k
oc0:X—>C

o (C,0) minimizes maxyex [|x — o(x)ll,



State-of-the-art: General Metrics

® NP-hard [FPT81]
© Poly Time 3-approximation (Gonzalez Algorithm)

© NP-Hard to approximate to 3 — o(1) factor! [FPT81]



Proof Overview: General Metrics

universe L
1 S
""" ~3 m sets
3
]
]
]
B  candidate centers
clients
]



Proof Overview: General Metrics

Theorem (Fowler-Paterson-Tanimoto’81)

Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists (C*, ¢*) such that m%g(A(x, o*(x)) <1
Xe

NO: For all (C, 0) we have mz%(xA(x, o(x)) >3
NE



State-of-the-art: ¢,, Metrics

® {# and ¢, metrics

o Poly Time 3-approximation

o NP-Hard to approximate to 3 — o(1) factor! [FG88]
© Euclidean metric

o Poly Time 2.74-approximation! [N5513]

o NP-Hard to approximate to 2.65 factor [FG88]
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Proof Overview: €p Metrics

Theorem (Karp’72)

It is NP-hard to distinguish:
YES: Vertex Coverage is 1
NO: Vertex Coverage is < 1

U

Theorem (Fowler-Paterson-Tanimoto’81)

Fix ¢ > 0. Given input (X, S, k) in R". It is NP-hard to
distinguish:

YES: There exists (C*, 6*) such that rj?&xﬂx —o'(x)[h <1

NO: For all (C, 0) we have ma}g<||x -o(x)]1 =3
X€
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Proof Overview: €p Metrics

Theorem (Fowler-Paterson-Tanimoto’81)

Fix ¢ > 0. Given input (X, S, k) in R". It is NP-hard to
distinguish:

YES: There exists (C*, ¢*) such that r£1€e§<||x - o' (x)|h £1

NO: For all (C, o) we have ma}g<||x -o(x)|1 >3
XE
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k-means and k-median modeling

© Input: X,S C R keN

© Output: A classification (C, 0):

[e]

CcS and |C|=k
ocog:X—>C

[e]

k-means: (C, o) minimizes ), ||x — a(x)ll%

[}

k-median: (C, o) minimizes )’ cx [|x — o(x)]l,
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Our Results (Cohen-Addad—-K’19,Cohen-Addad—K-Lee’22)

Discrete Version

k-means | k-median | k-means | k-median
(JCH) (JCH) (UGQO) (UGO)
{1-metric 3.94 1.73 1.56 1.14
{r-metric 1.73 1.27 1.17 1.06
{eo-metric 3.94 1.73 3.94" 1.73"

Continuous Version

k-means in f-metric ~ 1.36 (JCH), 1.07 (UGC)
k-median in {;-metric ~ 1.36 (JCH), 1.07 (UGC)
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Proof Overview: General Metrics

Theorem (Guha-Khuller'99)
Fix € > 0. Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists (C*, 0*) such that Y A(x, 0*(x))? < |X]|
xeX
NO: For all (C, 6) we have Y A(x, 0(x))?> > (1 +8/e — &) - |X]
xeX



Johnson Coverage Hypothesis

(a, t)-Johnson Coverage Problem

Given E C ([?]), and k as input, distinguish between:

Completeness: There exists 6 := {Sy,..., Sk} C (t[ﬂ) such that
VI €eE, 35, €6, S; CcT.
Soundness: For every 6 :={Sy,...,Sk} C (t[f]l) we have

Pr[3S;, S;cT] < a.
T~E



Johnson Coverage Hypothesis
(a, t)-Johnson Coverage Problem

Given E C ([?]), and k as input, distinguish between:

Completeness: There exists 6 := {Sy,..., Sk} C (t[ﬂ) such that
VI €¢E, 3S; €6, S; CT.

Soundness: For every 6 :={Sy,...,Sk} C (t[f]l) we have

Pr[3S;, S;cT] < a.
T~E

Johnson Coverage Hypothesis (Cohen-Addad—K-Lee’22)

Ve > 0, dt, € N such that (1 — % + ¢, t¢)-Johnson Coverage
problem is NP-hard.
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Theorem (Cohen-Addad—-K-Lee'22)
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Theorem (Cohen-Addad—-K-Lee'22)
Assuming(o.93,2) Johnson coverage problem is NP-hard,

given input X, S C {0, 1}00ogn) jt js NP-hard to distinguish:
YES: There exists (C*, ¢*) such that
Dl =o" @I <7,
xeX
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Containment Game: Protocols

© Deterministic Protocol:

o Message length: O(t log n) bits

o Completeness: 1, Soundness: o
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Containment Game: Randomized Protocol

©® Let @ :F, 5" — F; %"

© Alice and Bob pick randomly i € [c - logn]
© Bob sends to Alice S; := {6(u); | u € S}

© Alice checksif S; C T; := {6(u); |u € T}
© Message length: (t — 1) - log, q

© Soundness: t - (1 — A(®)) =~ O:(1/+/7) (for AG codes)
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Embedding Transcript into Hamming metric

® Construct 7 : 2" — {0,1}7-clogn

© Fixie€[c-logn]and S € 2"

1(S); = es;,, whereS; = {6(u); |u e S} Cq]

5={1,2,...1} c[n]

S5={1,2,...1} c[q]

1

5={12,...1/2,g-1/2+1,..q} <[q]
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Embedding Transcript into Hamming metric

® Construct 7 : 2" — {0,1}7-clogn
© Fixi € [c-logn]and S € 2"

1(S); = es;,, whereS; = {6(u); |u e S} Cq]

© X={«(T)| T e€E}
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Embedding Transcript into Hamming metric

® Construct 7 : 2" — {0, 1}9-¢logn
© Fixie€[c-logn]and S € 2"

1(S); = es;,, whereS; = {6(u); |u e S} Cq]
© X = {7(T)| T € E}

o s={®)|se (")}
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Structural Observations

Suppose Sc T

For every block i, we have 5, T,

5={1.2,..1/29-1/2+1,...q} <[q] T.= 5 U {t+1} c[q]
1 1
1 1
0 0
0 0
o 1
0 0
0 0
1 1
1 1

|t(T_i)-t(5_i)|=1
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Structural Observations

Suppose S¢ T

For most blocks i, we have 5, ¢ T,

5\ T ={q} T\ 5= {t+1,1+2}
1 1
1 1
0 0
0 0
0 - 1
0 ==mmmmmmm e 1
0 0
0 0
1 1
1 1
1-----—-———— - 0

|t(T_i)-t(S_i)| > 3
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Completeness of Reduction

© 8§ :={S,...,5} ¢ (t[f]l) be a cover of E C (['Z])
® Buildo: X - CCS:

o(7(T)) = ©(S;), whereS; Cc T
© FixT € Eand i € [c -logn]
Distance between ©(T) and o(7(T)) on block i is 1

© k-means objective is:

Dol = o ()l3 = (¢ - log m)? - [X]

xeX
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Soundness of Reduction

©® o0:X — C C S§issome classification

© Build 8§’ C ([”]) of size k:
Se§—n1(5)eC
© JE’ CE,s.t. VT € E’, T does not contain any subset in &’

© Fix 7(T) € Xprand i € [c - logn]
Distance between 7(T') and o(7(T)) on block i is mostly 3

© k-means objective is:

DMl = o()IF = (c - log n)? - 1X \ Xer| +9-(c - log n)? - | Xp|
xeX
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Our Embedding in Hamming metric

Theorem (Cohen-Addad—K-Lee’22)
Assuming («a, t)-Johnson coverage problem is NP-hard,

given input X, S C {0, 1}00ogn) jt js NP-hard to distinguish:
YES: There exists (C*, ¢*) such that
Dl =o" @I <7,
xeX
NO: For all (C, 0) we have
Dl —o@lf=A+8-(1-a)-n"

xeX
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Our Results (Cohen-Addad—-K’19,Cohen-Addad—K-Lee’22)

Discrete Version

k-means | k-median | k-means | k-median
(JCH) (JCH) (UGO) (UGO)
{1-metric 3.94 1.73 1.56 1.14
£-metric 1.73 1.27 1.17 1.06
{eo-metric 3.94 1.73 3.94" 1.73"

Continuous Version

k-means in f,-metric ~ 1.36 (JCH), 1.07 (UGC)
k-median in {;-metric ~ 1.36 (JCH), 1.07 (UGC)
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Our Results (Cohen-Addad—-K’19,Cohen-Addad—K-Lee’22)

Discrete Version

k-means | k-median | k-means | k-median
(JCH) (JCH) (UGO) (UGO)
{1-metric 3.94 1.73 1.56 1.14
£-metric 1.73 1.27 1.17 1.06
{eo-metric 3.94 1.73 3.94" 1.73"

k-means in f,-metric ~ 1.36 (JCH), 1.07 (UGC)

Decoding
) Vertex Cover

k-median in ¢;-metric ~ 1.36 (JCH), 1.07 (UGC

Use Feige’s
Continuous Version Instance
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Johnson Coverage Hypothesis: Discussion

© t = 2: Vertex Coverage problem
o ~0.9292 gap is tight!

© Pick € :={Sy,...,S5k} C (['11]): Max Coverage problem

o As t increases, gap approaches 1 — %

© LP Integrality gap:
Determine smallest collection in ( t[f]l) that hits all of ([’z])

o Hypergraph Turdn number: Open since 1940s!
o Recently resolved for t = 3
o Improved SDP gaps for Clustering
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Johnson Coverage Hypothesis: What can we show?

© t = 2: Vertex Coverage problem
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Johnson Coverage Hypothesis: What can we show?

© t = 2: Vertex Coverage problem
o ~0.9292 gap is tight!

© 3-Hypergraph Vertex Coverage problem is NP-Hard to
approximate to a factor of 7/8
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CYRELCEWETE

© Improved Inapproximability of

© k-means and k-median

© In {,-metrics

© Using Transcript of Containment Protocol

© And Geometric Realization of Johnson Graphs

Open: Is JCH true?
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State-of-the-art for k-means

Discrete Version

JCH UGC NP#P
{1-metric 3.94 1.56 1.38
{-metric 1.73 1.17 1.17
{-metric 3.94 3.94 3.94

Continuous Version

General metric ~ 4 (NP#P)
{r-metric = 1.36 (JCH), 1.07 (UGC), 1.06 (NP#P)
{1-metric = 2.10 (JCH), 1.16 (NP+#P)

{oo-metric ~ ???
35



Inapproximability of Clustering in Euclidean metrics
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Inapproximability of Clustering in Euclidean metrics

Points in {0, 1}¢

o O O o O o O

Is there a better embedding of the Johnson Graph
into the Euclidean metric?
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Inapproximability of Clustering in Euclidean metrics

Tight inapproximability of k-center in Euclidean metrics?
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Other Open Problems

Can we prove strong inapproximability results for:
© k-minsum in £,-metrics
© Capacitated Clustering

© Fair Clustering
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