Hardness of Approximation for Metric Clustering

Karthik C. S. (Rutgers University)

March 5th 2022

Circuit-SAT CSP Set Cover Max Coverage

Structure

Label Cover

- ◎ Input: $X, S \subseteq \mathbb{R}^d, k \in \mathbb{N}$
- 𝔅 Output: A classification (*C*, *σ*):
 - $C \subseteq S$ and |C| = k
 - $\circ \ \sigma: X \to C$
 - (C, σ) minimizes $\max_{x \in X} ||x \sigma(x)||_p$

- NP-hard [FPT81]
- Poly Time 3-approximation (Gonzalez Algorithm)
- ◎ NP-Hard to approximate to 3 o(1) factor! [FPT81]

Theorem (Fowler-Paterson-Tanimoto'81)

Given input (*X*, *S*, *k*). It is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\max_{x \in X} \Delta(x, \sigma^*(x)) \le 1$ NO: For all (C, σ) we have $\max_{x \in X} \Delta(x, \sigma(x)) \ge 3$

- $\bigcirc \ \ell_1 \text{ and } \ell_\infty \text{ metrics}$
 - Poly Time 3-approximation
 - NP-Hard to approximate to 3 o(1) factor! [FG88]
- Euclidean metric
 - Poly Time 2.74-approximation! [NSS13]
 - NP-Hard to approximate to 2.65 factor [FG88]

 \odot Input: $G(V,E),\ k$

- \odot Input: G(V, E), k
- \odot Objective: Max Fraction of *E* covered by *k* vertices in *V*

- \odot Input: G(V, E), k
- \odot Objective: Max Fraction of *E* covered by *k* vertices in *V*

Theorem (Karp'72)

It is NP-hard to distinguish:

- \odot Input: G(V, E), k
- \odot Objective: Max Fraction of *E* covered by *k* vertices in *V*

Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Vertex Coverage is 1

- \odot Input: G(V, E), k
- \odot Objective: Max Fraction of *E* covered by *k* vertices in *V*

Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Vertex Coverage is 1

NO: Vertex Coverage is < 1

Proof Overview: ℓ_p Metrics

Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Vertex Coverage is 1

NO: Vertex Coverage is < 1

Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Vertex Coverage is 1

NO: Vertex Coverage is < 1

Theorem (Fowler-Paterson-Tanimoto'81)

Fix $\varepsilon > 0$. Given input (X, S, k) in \mathbb{R}^n . It is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\max_{x \in X} ||x - \sigma^*(x)||_1 \le 1$

NO: For all (C, σ) we have $\max_{x \in X} ||x - \sigma(x)||_1 \ge 3$

Graph Embedding

Graph Embedding

Points in $\{0, 1\}^n$

Graph Embedding

Points in $\{0, 1\}^n$

Theorem (Fowler-Paterson-Tanimoto'81)

Fix $\varepsilon > 0$. Given input (X, S, k) in \mathbb{R}^n . It is NP-hard to distinguish: YES: There exists (C^*, σ^*) such that $\max_{x \in X} ||x - \sigma^*(x)||_1 \le 1$ NO: For all (C, σ) we have $\max_{x \in X} ||x - \sigma(x)||_1 \ge 3$

k-means & *k*-median

- ◎ Input: $X, S \subseteq \mathbb{R}^d, k \in \mathbb{N}$
- 𝔅 Output: A classification (*C*, *σ*):
 - $C \subseteq S$ and |C| = k
 - $\circ \ \sigma: X \to C$
 - *k*-means: (C, σ) minimizes $\sum_{x \in X} ||x \sigma(x)||_p^2$
 - *k*-median: (C, σ) minimizes $\sum_{x \in X} ||x \sigma(x)||_p$

Discrete Version

	<i>k</i> -means (JCH)	<i>k-</i> median (JCH)	<i>k</i> -means (UGC)	<i>k-</i> median (UGC)
ℓ_1 -metric	3.94	1.73	1.56	1.14
ℓ_2 -metric	1.73	1.27	1.17	1.06
ℓ_{∞} -metric	3.94	1.73	3.94*	1.73*

Continuous Version

k-means in ℓ_2 -metric \approx 1.36 (JCH), 1.07 (UGC) *k*-median in ℓ_1 -metric \approx 1.36 (JCH), 1.07 (UGC)

Theorem (Guha-Khuller'99)

Fix $\varepsilon > 0$. Given input (X, S, k). It is NP-hard to distinguish: YES: There exists (C^*, σ^*) such that $\sum_{x \in X} \Delta(x, \sigma^*(x))^2 \le |X|$ NO: For all (C, σ) we have $\sum_{x \in X} \Delta(x, \sigma(x))^2 \ge (1 + 8/e - \varepsilon) \cdot |X|$
(α, t) -Johnson Coverage Problem Given $E \subseteq {\binom{[n]}{k}}$, and k as input, distinguish between: **Completeness**: There exists $\mathscr{C} := \{S_1, \ldots, S_k\} \subseteq {\binom{[n]}{t-1}}$ such that $\forall T \in E, \exists S_i \in \mathscr{C}, S_i \subset T.$ **Soundness**: For every $\mathscr{C} := \{S_1, \ldots, S_k\} \subseteq {\binom{[n]}{t-1}}$ we have $\Pr_{T\sim E}[\exists S_i, \ S_i \subset T] \leq \alpha.$

 (α, t) -Johnson Coverage Problem Given $E \subseteq {\binom{[n]}{t}}$, and *k* as input, distinguish between: **Completeness**: There exists $\mathscr{C} := \{S_1, \ldots, S_k\} \subseteq {\binom{[n]}{t-1}}$ such that $\forall T \in E, \exists S_i \in \mathscr{C}, S_i \subset T.$ **Soundness**: For every $\mathscr{C} := \{S_1, \ldots, S_k\} \subseteq {\binom{[n]}{t-1}}$ we have $\Pr_{T\sim E}[\exists S_i, \ S_i \subset T] \leq \alpha.$

Johnson Coverage Hypothesis (Cohen-Addad-K-Lee'22)

 $\forall \varepsilon > 0, \exists t_{\varepsilon} \in \mathbb{N}$ such that $(1 - \frac{1}{e} + \varepsilon, t_{\varepsilon})$ -Johnson Coverage problem is NP-hard.

Assuming (α, t) -Johnson coverage problem is NP-hard,

given input $X, S \subseteq \{0, 1\}^{O(\log n)}$, it is NP-hard to distinguish:

Assuming (α, t) -Johnson coverage problem is NP-hard,

given input $X, S \subseteq \{0, 1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists (C^* , σ^*) such that

$$\sum_{x\in X} \|x-\sigma^*(x)\|_0^2 \le n',$$

Assuming (α, t) -Johnson coverage problem is NP-hard,

given input $X, S \subseteq \{0, 1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists (C^* , σ^*) such that

$$\sum_{x\in X} \|x-\sigma^*(x)\|_0^2 \le n',$$

$$\sum_{x \in X} \|x - \sigma(x)\|_0^2 \ge (1 + 8 \cdot (1 - \alpha)) \cdot n'.$$

Assuming $(1-\frac{1}{e}, t)$ Johnson coverage problem is NP-hard,

given input $X, S \subseteq \{0, 1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists (C^* , σ^*) such that

$$\sum_{x\in X} \|x-\sigma^*(x)\|_0^2 \le n',$$

$$\sum_{x \in X} \|x - \sigma(x)\|_0^2 \ge (1 + 8 \cdot (1 - \alpha)) \cdot n'.$$

Assuming $(1-\frac{1}{e}, t)$ Johnson coverage problem is NP-hard,

given input $X, S \subseteq \{0, 1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists (C^* , σ^*) such that

$$\sum_{x\in X} \|x-\sigma^*(x)\|_0^2 \le n',$$

$$\sum_{x\in X} \|x-\sigma(x)\|_0^2 \ge \left(1+\frac{8}{e}\right) \cdot n'.$$

Assuming (α, t) -Johnson coverage problem is NP-hard,

given input $X, S \subseteq \{0, 1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists (C^* , σ^*) such that

$$\sum_{x\in X} \|x-\sigma^*(x)\|_0^2 \le n',$$

$$\sum_{x \in X} \|x - \sigma(x)\|_0^2 \ge (1 + 8 \cdot (1 - \alpha)) \cdot n'.$$

Assuming(0.93,2) Johnson coverage problem is NP-hard,

given input $X, \mathcal{S} \subseteq \{0, 1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists (C^* , σ^*) such that

$$\sum_{x\in X} \|x-\sigma^*(x)\|_0^2 \le n',$$

$$\sum_{x \in X} \|x - \sigma(x)\|_0^2 \ge (1 + 8 \cdot (1 - \alpha)) \cdot n'.$$

Assuming(0.93,2) Johnson coverage problem is NP-hard,

given input $X, \mathcal{S} \subseteq \{0, 1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that

$$\sum_{x\in X} \|x-\sigma^*(x)\|_0^2 \le n',$$

$$\sum_{x \in X} \|x - \sigma(x)\|_0^2 \ge 1.56 \cdot n'.$$

Johnson Graph Embedding

Points in $\{0, 1\}^n$

Points in $\{0, 1\}^n$

 $\binom{[n]}{t-1}$ \ni S

Public Randomness

O Deterministic Protocol:

- Message length: $O(t \log n)$ bits
- Completeness: 1, Soundness: 0

O Deterministic Protocol:

- Message length: $O(t \log n)$ bits
- Completeness: 1, Soundness: 0
- Randomized Protocol:
 - Message length: $O_{\varepsilon,t}(1)$ bits

O Deterministic Protocol:

- Message length: $O(t \log n)$ bits
- Completeness: 1, Soundness: 0
- Randomized Protocol:
 - Message length: $O_{\varepsilon,t}(1)$ bits
 - Completeness: 1, Soundness: ϵ

Containment Game: Randomized Protocol

$$\odot \text{ Let } \mathscr{C} : \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

$$o Let \mathscr{C} : \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

◎ Alice and Bob pick randomly $i \in [c \cdot \log n]$

$$\odot \text{ Let } \mathscr{C} : \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

- ◎ Alice and Bob pick randomly $i \in [c \cdot \log n]$
- ◎ Bob sends to Alice $S_i := \{ \mathscr{C}(u)_i \mid u \in S \}$

$$\odot \text{ Let } \mathscr{C} : \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

- ◎ Alice and Bob pick randomly $i \in [c \cdot \log n]$
- ◎ Bob sends to Alice $S_i := \{ \mathscr{C}(u)_i \mid u \in S \}$
- ◎ Alice checks if $S_i \subseteq T_i := \{ \mathscr{C}(u)_i \mid u \in T \}$

$$\odot \text{ Let } \mathscr{C} : \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

- ◎ Alice and Bob pick randomly $i \in [c \cdot \log n]$
- ◎ Bob sends to Alice $S_i := \{ \mathscr{C}(u)_i \mid u \in S \}$
- ◎ Alice checks if $S_i \subseteq T_i := \{ \mathscr{C}(u)_i \mid u \in T \}$
- ◎ Message length: $(t 1) \cdot \log_2 q$

$$\odot \text{ Let } \mathscr{C} : \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

- ◎ Alice and Bob pick randomly $i \in [c \cdot \log n]$
- ◎ Bob sends to Alice $S_i := \{ \mathscr{C}(u)_i \mid u \in S \}$
- ◎ Alice checks if $S_i \subseteq T_i := \{ \mathscr{C}(u)_i \mid u \in T \}$
- ◎ Message length: $(t 1) \cdot \log_2 q$
- ⊚ Soundness: $t \cdot (1 \Delta(\mathscr{C}))$

$$\odot \text{ Let } \mathscr{C} : \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

- ◎ Alice and Bob pick randomly $i \in [c \cdot \log n]$
- ◎ Bob sends to Alice $S_i := \{ \mathscr{C}(u)_i \mid u \in S \}$
- ◎ Alice checks if $S_i \subseteq T_i := \{ \mathscr{C}(u)_i \mid u \in T \}$
- ◎ Message length: $(t 1) \cdot \log_2 q$
- ◎ Soundness: $t \cdot (1 \Delta(\mathscr{C})) \approx O_t(1/\sqrt{q})$ (for AG codes)

:

◎ Construct
$$\tau : 2^{[n]} \to \{0,1\}^{q \cdot c \cdot \log n}$$

◎ Construct
$$\tau : 2^{[n]} \to \{0, 1\}^{q \cdot c \cdot \log n}$$

◎ Fix
$$i \in [c \cdot \log n]$$
 and $S \in 2^{[n]}$:

$$\odot \text{ Construct } \tau: 2^{[n]} \to \{0,1\}^{q \cdot c \cdot \log n}$$

◎ Fix $i \in [c \cdot \log n]$ and $S \in 2^{[n]}$:

 $\tau(S)_i = e_{S_i}$, where $S_i = \{\mathscr{C}(u)_i \mid u \in S\} \subseteq [q]$

O Construct
$$\tau: 2^{[n]} \to \{0, 1\}^{q \cdot c \cdot \log n}$$

 O Fix $i \in [c \cdot \log n]$ and $S \in 2^{[n]}$:
 $\tau(S)_i = e_{S_i}$, where $S_i = \{\mathscr{C}(u)_i \mid u \in S\} \subseteq [q]$
 $S_i = \{1, 2, \dots, t\} \subset [n]$

 S_i = \{1, 2, \dots, t\} \subset [q]

 $S_i = \{1, 2, \dots, t\} \subset [q]$
 $S_i = \{1, 2, \dots, t\}$
 $S_i = \{1, 2, \dots,$

25

◎ Construct
$$\tau : 2^{[n]} \to \{0, 1\}^{q \cdot c \cdot \log n}$$

◎ Fix $i \in [c \cdot \log n]$ and $S \in 2^{[n]}$:

 $\tau(S)_i = e_{S_i}$, where $S_i = \{\mathscr{C}(u)_i \mid u \in S\} \subseteq [q]$

 $\odot X = \{\tau(T) \mid T \in E\}$

◎ Construct
$$\tau : 2^{[n]} \to \{0,1\}^{q \cdot c \cdot \log n}$$

◎ Fix $i \in [c \cdot \log n]$ and $S \in 2^{[n]}$:

 $\tau(S)_i = e_{S_i}$, where $S_i = \{\mathscr{C}(u)_i \mid u \in S\} \subseteq [q]$

$$X = \{\tau(T) \mid T \in E\}$$

$$\delta = \left\{\tau(S) \mid S \in \binom{[n]}{t-1}\right\}$$

Structural Observations

Suppose $S \subset T$ For every block i, we have $S_i \subset T_i$ $S_i=\{1,2,...,t/2,q-t/2+1,...,q\} \subset [q]$ $T_i=S_i \cup \{t+1\} \subset [q]$ 1 $|\tau(T_i)-\tau(S_i)|=1$

Structural Observations

Suppose S⊄T

For most blocks i, we have $S_i \notin T_i$

$S_i \setminus T_i = \{q\}$	$T_i \setminus S_i = \{+1, +2\}$
1	1
1	:
1	1
0	0
1	:
0	0
0	1
0	1
0	0
:	:
0	0
1	1
	:
1	1
1	0

 $|\tau(T_i)-\tau(S_i)| \ge 3$
◎
$$\mathcal{S}' := \{S_1, \dots, S_k\} \subseteq {\binom{[n]}{t-1}}$$
 be a cover of $E \subseteq {\binom{[n]}{t}}$

◎ **8'** := {
$$S_1, \ldots, S_k$$
} ⊆ $\binom{[n]}{t-1}$ be a cover of $E \subseteq \binom{[n]}{t}$

◎
$$S' := \{S_1, \ldots, S_k\} \subseteq {[n] \choose t-1}$$
 be a cover of $E \subseteq {[n] \choose t}$

$$\sigma(\tau(T)) = \tau(S_i)$$
, where $S_i \subset T$

◎
$$\mathscr{S}' := \{S_1, \ldots, S_k\} \subseteq {\binom{[n]}{t-1}}$$
 be a cover of $E \subseteq {\binom{[n]}{t}}$

$$\sigma(\tau(T)) = \tau(S_i)$$
, where $S_i \subset T$

◎ Fix $T \in E$ and $i \in [c \cdot \log n]$

Distance between $\tau(T)$ and $\sigma(\tau(T))$ on block *i* is 1

◎
$$\mathscr{S}' := \{S_1, \ldots, S_k\} \subseteq {\binom{[n]}{t-1}}$$
 be a cover of $E \subseteq {\binom{[n]}{t}}$

$$\sigma(\tau(T)) = \tau(S_i)$$
, where $S_i \subset T$

◎ Fix $T \in E$ and $i \in [c \cdot \log n]$

Distance between $\tau(T)$ and $\sigma(\tau(T))$ on block *i* is 1

◎ *k*-means objective is:

$$\sum_{x \in X} \|(x - \sigma(x))\|_0^2 = (c \cdot \log n)^2 \cdot |X|$$

σ : *X* → *C* ⊆ *S* is some classification
 Build *S*' ⊆ (^[n]_{t-1}) of size *k*:

$$S \in \mathcal{S}' \iff \tau(S) \in C$$

 $\odot \sigma : X \to C \subseteq \mathcal{S}$ is some classification

◎ Build $\mathscr{S}' \subseteq {\binom{[n]}{t-1}}$ of size *k*:

$$S \in \mathcal{S}' \iff \tau(S) \in C$$

◎ $\exists E' \subseteq E$, s.t. $\forall T \in E'$, T does not contain any subset in S'

σ : *X* → *C* ⊆ *S* is some classification
 Build *S'* ⊆ $\binom{[n]}{t-1}$ of size *k*:

$$S \in \mathcal{S}' \iff \tau(S) \in C$$

◎ $\exists E' \subseteq E$, s.t. $\forall T \in E'$, T does not contain any subset in S'

◎ Fix $\tau(T) \in X_{E'}$ and $i \in [c \cdot \log n]$

Distance between $\tau(T)$ and $\sigma(\tau(T))$ on block *i* is mostly 3

σ : *X* → *C* ⊆ *S* is some classification
 Build *S*' ⊆ $\binom{[n]}{t-1}$ of size *k*:

$$S \in \mathcal{S}' \iff \tau(S) \in C$$

◎ $\exists E' \subseteq E$, s.t. $\forall T \in E'$, T does not contain any subset in S'

 $onumber Fix τ(T) ∈ X_{E'} and i ∈ [c · log n]$

Distance between $\tau(T)$ and $\sigma(\tau(T))$ on block *i* is mostly 3

◎ *k*-means objective is:

$$\sum_{x \in X} \|(x - \sigma(x))\|_0^2 = (c \cdot \log n)^2 \cdot |X \setminus X_{E'}| + 9 \cdot (c \cdot \log n)^2 \cdot |X_{E'}|$$

Theorem (Cohen-Addad–K–Lee'22)

Assuming (α, t) -Johnson coverage problem is NP-hard,

given input X, $\mathcal{S} \subseteq \{0, 1\}^{O(\log n)}$, it is NP-hard to distinguish:

YES: There exists (C^* , σ^*) such that

$$\sum_{x\in X} \|(x-\sigma^*(x))\|_0^2 \le n',$$

NO: For all (C, σ) we have

$$\sum_{x \in X} \|(x - \sigma(x))\|_0^2 \ge (1 + 8 \cdot (1 - \alpha)) \cdot n'.$$

Discrete Version

	<i>k</i> -means (JCH)	<i>k-</i> median (JCH)	<i>k</i> -means (UGC)	<i>k</i> -median (UGC)
ℓ_1 -metric	3.94	1.73	1.56	1.14
ℓ_2 -metric	1.73	1.27	1.17	1.06
ℓ_{∞} -metric	3.94	1.73	3.94*	1.73*

Continuous Version

k-means in ℓ_2 -metric \approx 1.36 (JCH), 1.07 (UGC) *k*-median in ℓ_1 -metric \approx 1.36 (JCH), 1.07 (UGC)

251297	Discrete Version				
ohnsolutile		<i>k</i> -means (JCH)	<i>k-</i> median (JCH)	<i>k</i> -means (UGC)	<i>k</i> -median (UGC)
	ℓ_1 -metric	3.94	1.73	1.56	1.14
	ℓ_2 -metric	1.73	1.27	1.17	1.06
	ℓ_{∞} -metric	3.94	1.73	3.94*	1.73*

Continuous Version

k-means in ℓ_2 -metric \approx 1.36 (JCH), 1.07 (UGC) *k*-median in ℓ_1 -metric \approx 1.36 (JCH), 1.07 (UGC)

Discrete Version					
	<i>k</i> -means (JCH)	<i>k-</i> median (JCH)	<i>k</i> -means (UGC)	<i>k</i> -median (UGC)	
ℓ_1 -metric	3.94	1.73	1.56	1.14	
ℓ_2 -metric	1.73	1.27	1.17	1.06	
ℓ_{∞} -metric	3.94	1.73	3.94*	1.73*	
Use Feige'sContinuous VersionInstance					
	ℓ_1 -metric ℓ_2 -metric ℓ_{∞} -metric	Dis k-means (JCH) ℓ_1 -metric 3.94 ℓ_2 -metric 1.73 ℓ_{∞} -metric 3.94 Cont	Discrete Versionk-means (JCH)k-median (JCH) ℓ_1 -metric 3.94 1.73 ℓ_2 -metric 1.73 1.27 ℓ_{∞} -metric 3.94 1.73 Continuous Version	k-means (JCH) k-median (JCH) k-means (UGC) l1-metric 3.94 1.73 1.56 l2-metric 1.73 1.27 1.17 lco-metric 3.94 1.73 3.94*	

k-means in ℓ_2 -metric \approx 1.36 (JCH), 1.07 (UGC) *k*-median in ℓ_1 -metric \approx 1.36 (JCH), 1.07 (UGC)

	k-means (JCH)	<i>k</i> -median (JCH)	<i>k</i> -means (UGC)	<i>k</i> -median (UGC)
ℓ_1 -metric	3.94	1.73	1.56	1.14
ℓ_2 -metric	1.73	1.27	1.17	1.06
ℓ_∞ -metric	3.94	1.73	3.94*	1.73*
	Cont	inuous Ver	sion	se Feige's Instance

 \odot *t* = 2: Vertex Coverage problem

t = 2: Vertex Coverage problem
 ≈0.9292 gap is tight!

◎ Pick $\mathscr{C} := \{S_1, \ldots, S_k\} \subseteq {\binom{[n]}{1}}$: Max Coverage problem

- \odot *t* = 2: Vertex Coverage problem
 - \approx 0.9292 gap is tight!

◎ Pick $\mathscr{C} := \{S_1, \dots, S_k\} \subseteq {\binom{[n]}{1}}$: Max Coverage problem

• As *t* increases, gap approaches $1 - \frac{1}{e}$

- \odot *t* = 2: Vertex Coverage problem
 - \approx 0.9292 gap is tight!

Pick C := {S₁,...,S_k} ⊆ (^[n]₁): Max Coverage problem
 As t increases, gap approaches 1 - ¹/_e

◎ LP Integrality gap:

Determine smallest collection in $\binom{[n]}{t-1}$ that hits all of $\binom{[n]}{t}$

- \odot *t* = 2: Vertex Coverage problem
 - \approx 0.9292 gap is tight!

Pick C := {S₁,...,S_k} ⊆ (^[n]₁): Max Coverage problem
 As t increases, gap approaches 1 - ¹/_e

◎ LP Integrality gap:

Determine smallest collection in $\binom{[n]}{t-1}$ that hits all of $\binom{[n]}{t}$

• Hypergraph Turán number: Open since 1940s!

- \odot *t* = 2: Vertex Coverage problem
 - \approx 0.9292 gap is tight!

Pick C := {S₁,...,S_k} ⊆ (^[n]₁): Max Coverage problem
 As *t* increases, gap approaches 1 - ¹/_e

◎ LP Integrality gap:

Determine smallest collection in $\binom{[n]}{t-1}$ that hits all of $\binom{[n]}{t}$

- Hypergraph Turán number: Open since 1940s!
- Recently resolved for t = 3
- Improved SDP gaps for Clustering

Johnson Coverage Hypothesis: What can we show?

 \odot *t* = 2: Vertex Coverage problem

- \odot *t* = 2: Vertex Coverage problem
 - ≈0.9292 gap is tight!
- 3-Hypergraph Vertex Coverage problem is NP-Hard to approximate to a factor of 7/8

Improved Inapproximability of

- Improved Inapproximability of
- ◎ *k*-means and *k*-median

- Improved Inapproximability of
- ◎ *k*-means and *k*-median
- \odot In ℓ_p -metrics

- Improved Inapproximability of
- ◎ *k*-means and *k*-median
- \odot In ℓ_p -metrics
- Using Transcript of Containment Protocol

- Improved Inapproximability of
- ◎ *k*-means and *k*-median
- ◎ In l_p -metrics
- Using Transcript of Containment Protocol
- And Geometric Realization of Johnson Graphs

- Improved Inapproximability of
- ◎ *k*-means and *k*-median
- ◎ In l_p -metrics
- Using Transcript of Containment Protocol
- And Geometric Realization of Johnson Graphs

Open: Is JCH true?

O PROBLEMS E N

State-of-the-art for *k*-means

Discrete Version

	JCH	UGC	NP≠P
ℓ_1 -metric	3.94	1.56	1.38
ℓ_2 -metric	1.73	1.17	1.17
ℓ_{∞} -metric	3.94	3.94	3.94

Continuous Version

General metric $\approx 4 \text{ (NP}\neq\text{P)}$ ℓ_2 -metric $\approx 1.36 \text{ (JCH)}, 1.07 \text{ (UGC)}, 1.06 \text{ (NP}\neq\text{P)}$ ℓ_1 -metric $\approx 2.10 \text{ (JCH)}, 1.16 \text{ (NP}\neq\text{P)}$

 ℓ_{∞} -metric \approx ???

Inapproximability of Clustering in Euclidean metrics

Inapproximability of Clustering in Euclidean metrics

Points in $\{0, 1\}^d$

Inapproximability of Clustering in Euclidean metrics

Points in $\{0, 1\}^d$

Inapproximability of Clustering in Euclidean metrics

Is there a better embedding of the Johnson Graph into the Euclidean metric?

Inapproximability of Clustering in Euclidean metrics

Tight inapproximability of *k*-center in Euclidean metrics?

 \odot *k*-minsum in ℓ_p -metrics

- \odot *k*-minsum in ℓ_p -metrics
- Capacitated Clustering

- \odot *k*-minsum in ℓ_p -metrics
- Capacitated Clustering
- ◎ Fair Clustering

THANK YOU!