Hardness of Approximation for Metric Clustering

Karthik C. S.
(Rutgers University)

March $4^{\text {th }} 2022$

0°

$$
\begin{aligned}
& 1566836894 \\
& 2202856557 \\
& 63880154 / 5 \\
& 2198033641 \\
& 7914992451 \\
& 3739367243 \\
& 3519744349 \\
& 0160528857 \\
& 5672970289 \\
& 0471266070
\end{aligned}
$$

Classifying Handwritten Digits

$$
\begin{array}{llllllllll}
1 & 5 & 6 & 6 & 8 & 3 & 6 & 8 & 9 & 4 \\
2 & 2 & 0 & 2 & 8 & 5 & 6 & 5 & 5 & 7 \\
6 & 3 & 8 & 8 & 0 & 1 & 5 & 4 & 1 & 5 \\
2 & 1 & 9 & 8 & 0 & 3 & 3 & 6 & 4 & 1 \\
7 & 9 & 1 & 4 & 9 & 9 & 2 & 4 & 5 & 1 \\
3 & 7 & 3 & 9 & 3 & 6 & 7 & 2 & 4 & 3 \\
3 & 5 & 1 & 9 & 7 & 4 & 4 & 3 & 4 & 9 \\
0 & 1 & 6 & 0 & 5 & 2 & 8 & 8 & 5 & 7 \\
5 & 6 & 7 & 2 & 9 & 1 & 0 & 2 & 8 & 9
\end{array}
$$

$$
28 \times 28
$$

grayscale image

Clustering: Abstraction

Clustering: Abstraction

Clustering: Abstraction

Task of Classifying Input Data

Clustering: Applications

© Reveal internal structure of data

- Clustering gene expression

Clustering: Applications

© Reveal internal structure of data

- Clustering gene expression
© Partition data
- Market segmentation

Clustering: Applications

© Reveal internal structure of data

- Clustering gene expression
© Partition data
- Market segmentation
© Data Preparation
- Summarize news

Clustering: Applications

© Reveal internal structure of data

- Clustering gene expression
© Partition data
- Market segmentation
© Data Preparation
- Summarize news
© Data Exploration
- Underlying rules and Reoccurring patterns

Clustering: Modeling

© (Γ, Δ) is a metric space

Clustering: Modeling

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma, k \in \mathbb{N}$

Clustering: Modeling

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma, k \in \mathbb{N}$
© Output: A classification (C, σ) :

Clustering: Modeling

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma, k \in \mathbb{N}$
© Output: A classification (C, σ) :

$$
\text { - } C \subseteq \Gamma \text { and }|C|=k
$$

Clustering: Modeling

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma, k \in \mathbb{N}$
© Output: A classification (C, σ) :

- $C \subseteq \Gamma$ and $|C|=k$
- $\sigma: X \rightarrow C$

Clustering: Modeling

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma, k \in \mathbb{N}$
© Output: A classification (C, σ) :

- $C \subseteq \Gamma$ and $|C|=k$
- $\sigma: X \rightarrow C$
- σ is good

Clustering: Modeling

Continuous Version

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma, k \in \mathbb{N}$
© Output: A classification (C, σ) :

- $C \subseteq \Gamma$ and $|C|=k$
- $\sigma: X \rightarrow C$
- σ is good

Clustering: Modeling

Discrete
 Continurus Version

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma, k \in \mathbb{N}$
© Output: A classification (C, σ) :

- $C \subseteq \Gamma$ and $|C|=k$
- $\sigma: X \rightarrow C$
- σ is good

Clustering: Modeling

Discrete
 Continurus Version

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma, k \in \mathbb{N}$ and $\mathcal{S} \subseteq \Gamma$
© Output: A classification (C, σ) :
— δ

- $C \subseteq \mathbf{X}$ and $|C|=k$
- $\sigma: X \rightarrow C$
- σ is good

What is Good Classification?

© k-means, k-median, k-center, min-sum, correlation clustering ...

What is Good Classification?

© k-means, k-median, k-center, min-sum, correlation clustering ...
© k-center value of (C, σ)

$$
\max _{x \in X} \Delta(x, \sigma(x))
$$

What is Good Classification?

© k-means, k-median, k-center, min-sum, correlation clustering ...
© k-center value of (C, σ)

$$
\max _{x \in X} \Delta(x, \sigma(x))
$$

© k-median value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))
$$

What is Good Classification?

© k-means, k-median, k-center, min-sum, correlation clustering ...
© k-center value of (C, σ)

$$
\max _{x \in X} \Delta(x, \sigma(x))
$$

© k-median value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))
$$

© k-means value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))^{2}
$$

What is Good Classification?

© k-means, k-median, k-center, min-sum, correlation clustering ...
© k-center value of (C, σ)

$$
\max _{x \in X} \Delta(x, \sigma(x))
$$

© k-median value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))
$$

© k-means value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))^{2}
$$

© Don't fit: Facility Location, Hierarchical Clustering ...

Computational Question

Given (X, S, k) as input find a classification (C, σ) that minimizes the Clustering objective

Computational Question

Given (X, S, k) as input find a classification (C, σ) that minimizes the Clustering objective

Clustering Problem for objective Λ

Computational Question

Given (X, S, k) as input find a classification (C, σ) that minimizes the Clustering objective

Clustering Problem for objective Λ
Yes: There is classification $\left(C^{*}, \sigma^{*}\right)$, such that $\Lambda\left(X, \sigma^{*}\right) \leq \beta$

Computational Question

Given (X, S, k) as input find a classification (C, σ) that minimizes the Clustering objective

Clustering Problem for objective Λ
Yes: There is classification $\left(C^{*}, \sigma^{*}\right)$, such that $\Lambda\left(X, \sigma^{*}\right) \leq \beta$
No: For all classification (C, σ), we have $\Lambda(X, \sigma)>\beta$

The Bitter Truth

NP-Hard

Salvaging Bitterness

Efficient Approximation

Truth cannot be Salvaged

NP-Hard to Approximate

Hardness of Approximation

© Many important problems are not tractable

Hardness of Approximation

© Many important problems are not tractable
© Need to cope with the intractability

Hardness of Approximation

© Many important problems are not tractable
© Need to cope with the intractability
© Design algorithms that find solutions whose cost or value is close to the optimum

Hardness of Approximation

© Many important problems are not tractable
© Need to cope with the intractability
© Design algorithms that find solutions whose cost or value is close to the optimum
© For some fundamental problems finding good approximate solutions is as hard as finding optimal solutions

Hardness of Approximation

© Many important problems are not tractable
© Need to cope with the intractability
© Design algorithms that find solutions whose cost or value is close to the optimum
© For some fundamental problems finding good approximate solutions is as hard as finding optimal solutions
© Area studying such results: Hardness of Approximation

New Computational Question

Given (X, S, k) as input find a classification (C, σ) that approximately minimizes the Clustering objective

New Computational Question

Given (X, S, k) as input find a classification (C, σ) that approximately minimizes the Clustering objective

Clustering Problem for objective Λ

New Computational Question

Given (X, S, k) as input find a classification (C, σ) that approximately minimizes the Clustering objective

Clustering Problem for objective Λ
Yes: There is classification $\left(C^{*}, \sigma^{*}\right)$, such that $\Lambda\left(X, \sigma^{*}\right) \leq \beta$

New Computational Question

Given (X, S, k) as input find a classification (C, σ) that approximately minimizes the Clustering objective

Clustering Problem for objective Λ
Yes: There is classification $\left(C^{*}, \sigma^{*}\right)$, such that $\Lambda\left(X, \sigma^{*}\right) \leq \beta$
No: For all classification (C, σ), we have $\Lambda(X, \sigma)>(1+\delta) \cdot \beta$
k-center

k-center modeling

© Input: $X, S \subseteq \mathbb{R}^{d}, k \in \mathbb{N}$

k-center modeling

© Input: $X, S \subseteq \mathbb{R}^{d}, k \in \mathbb{N}$
© Output: A classification (C, σ) :

- $C \subseteq S$ and $|C|=k$
- $\sigma: X \rightarrow C$
- (C, σ) minimizes $\max _{x \in X}\|x-\sigma(x)\|_{p}$

State-of-the-art: General Metrics

© NP-hard [FPT81]

State-of-the-art: General Metrics

© NP-hard [FPT81]
© Poly Time 3-approximation (Gonzalez Algorithm)

State-of-the-art: General Metrics

© NP-hard [FPT81]
© Poly Time 3-approximation (Gonzalez Algorithm)
© NP-Hard to approximate to $3-o(1)$ factor! [FPT81]

State-of-the-art: ℓ_{p} Metrics

© ℓ_{1} and ℓ_{∞} metrics

- Poly Time 3-approximation

State-of-the-art: ℓ_{p} Metrics

© ℓ_{1} and ℓ_{∞} metrics

- Poly Time 3-approximation
- NP-Hard to approximate to 3 - o(1) factor! [FG88]
© Euclidean metric
- Poly Time 2.74-approximation! [NSS13]

State-of-the-art: ℓ_{p} Metrics

(0) ℓ_{1} and ℓ_{∞} metrics

- Poly Time 3-approximation
- NP-Hard to approximate to $3-o(1)$ factor! [FG88]
© Euclidean metric
- Poly Time 2.74-approximation! [NSS13]
- NP-Hard to approximate to 2.65 factor [FG88]

Max Coverage:
© Input: Universe and Collection of Subsets (U, \mathcal{S}, k)

Proof Overview: General Metrics

Max Coverage:
© Input: Universe and Collection of Subsets (U, \mathcal{S}, k)
© Objective: Max Fraction of U covered by k subsets in \mathcal{S}

Proof Overview: General Metrics

Max Coverage:
© Input: Universe and Collection of Subsets (U, \mathcal{S}, k)
© Objective: Max Fraction of U covered by k subsets in \mathcal{S}

Theorem (Karp'72)

It is NP-hard to distinguish:

Proof Overview: General Metrics

Max Coverage:
© Input: Universe and Collection of Subsets (U, S, k)
© Objective: Max Fraction of U covered by k subsets in δ

Theorem (Karp’72)

It is NP-hard to distinguish:
YES: Max Coverage is 1

Proof Overview: General Metrics

Max Coverage:
© Input: Universe and Collection of Subsets (U, S, k)
© Objective: Max Fraction of U covered by k subsets in δ

Theorem (Karp'72)

It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is <1

Proof Overview: General Metrics

Theorem (Karp'72)

It is NP-hard to distinguish:

Theorem (Karp'72)

It is NP-hard to distinguish:
YES: Max Coverage is 1

Theorem (Karp’72)

It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is <1

Proof Overview: General Metrics

Theorem (Karp'72)

It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is <1

Theorem (Fowler-Paterson-Tanimoto'81)

Fix $\varepsilon>0$. Given input (X, S, k). It is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that max $\Delta\left(x, \sigma^{*}(x)\right) \leq 1$

$$
x \in X
$$

NO: For all (C, σ) we have $\max \Delta(x, \sigma(x)) \geq 3$

$$
x \in X
$$

Proof Overview: General Metrics

Proof Overview: General Metrics

Theorem (Fowler-Paterson-Tanimoto'81)

Given input (X, S, k). It is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\max _{x \in X} \Delta\left(x, \sigma^{*}(x)\right) \leq 1$
NO: For all (C, σ) we have $\max \Delta(x, \sigma(x)) \geq 3$

$$
x \in X
$$

k-means \& k-median

k-means and k-median modeling

© Input: $X, S \subseteq \mathbb{R}^{d}, k \in \mathbb{N}$

k-means and k-median modeling

๑ Input: $X, S \subseteq \mathbb{R}^{d}, k \in \mathbb{N}$
© Output: A classification (C, σ):

- $C \subseteq S$ and $|C|=k$
- $\sigma: X \rightarrow C$
- k-means: (C, σ) minimizes $\sum_{x \in X}\|x-\sigma(x)\|_{p}^{2}$
- k-median: (C, σ) minimizes $\sum_{x \in X}\|x-\sigma(x)\|_{p}$

Exact Computation

© NP-hard when $k=2$ (Dasgupta'07)

Exact Computation

© NP-hard when $k=2$ (Dasgupta'07)
© NP-hard in Euclidean plane
(Megiddo-Supowit'84,
Mahajan-Nimbhorkar-Varadarajan'12)

Exact Computation

© NP-hard when $k=2$ (Dasgupta'07)
© NP-hard in Euclidean plane
(Megiddo-Supowit'84,
Mahajan-Nimbhorkar-Varadarajan'12)
© W[2]-hard in general metric (Guha-Khuller'99)

Approximation Algorithms

© General metric: k-means ≥ 9
(Ahmadian-Norouzi-Fard-Svensson-Ward'17)

Approximation Algorithms

© General metric: k-means ≥ 9
(Ahmadian-Norouzi-Fard-Svensson-Ward'17)
© General metric: k-median ≥ 2.67 (Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)

Approximation Algorithms

© General metric: k-means ≥ 9
(Ahmadian-Norouzi-Fard-Svensson-Ward'17)
© General metric: k-median ≥ 2.67 (Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)
© Euclidean metric k-means:

Approximation Algorithms

© General metric: k-means ≥ 9 (Ahmadian-Norouzi-Fard-Svensson-Ward'17)
© General metric: k-median ≥ 2.67 (Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)
© Euclidean metric k-means:

- Poly time approximation ≈ 6.357 (Ahmadian-Norouzi-Fard-Svensson-Ward'17)

Approximation Algorithms

© General metric: k-means ≥ 9 (Ahmadian-Norouzi-Fard-Svensson-Ward'17)
© General metric: k-median ≥ 2.67 (Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)
© Euclidean metric k-means:

- Poly time approximation ≈ 6.357 (Ahmadian-Norouzi-Fard-Svensson-Ward'17)
- Fixed Dimension: PTAS (Cohen-Addad'18)

Approximation Algorithms

© General metric: k-means ≥ 9 (Ahmadian-Norouzi-Fard-Svensson-Ward'17)
© General metric: k-median ≥ 2.67 (Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)
© Euclidean metric k-means:

- Poly time approximation ≈ 6.357 (Ahmadian-Norouzi-Fard-Svensson-Ward'17)
- Fixed Dimension: PTAS (Cohen-Addad'18)
- Fixed k : PTAS (Kumar-Sabharwal-Sen'10)

Hardness of Approximation

Discrete Version:

Hardness of Approximation

Discrete Version:
© General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)

Hardness of Approximation

Discrete Version:

© General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)
© ℓ_{2}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$ (Trevisan'oo)
© ℓ_{1}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$
(Trevisan'oo)

Hardness of Approximation

Discrete Version:

© General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)
© ℓ_{2}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$ (Trevisan'oo)
© ℓ_{1}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$
(Trevisan'oo)
(0 ℓ_{∞}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$ (Guruswami-Indyk'03)

Hardness of Approximation

Discrete Version:

© General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)
© ℓ_{2}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$ (Trevisan'oo)
© ℓ_{1}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$ (Trevisan'oo)
© ℓ_{∞}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$ (Guruswami-Indyk'03)

Continuous Version:

k-means in Euclidean metric <1.0013
(Lee-Schmidt-Wright'17)

Hardness of Approximation

Discrete Version:

© General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)
© ℓ_{2}-metric: k-means $<\frac{1.73}{1.01}$, k-median $\ll 1.27$ (Trevisan'oo)
© ℓ_{1}-metric: k-means $<\frac{3.94}{1.01}$, k-median $\ll 1.73$
(Trevisan'oo)
© ℓ_{∞}-metric: k-means $\ll 1.01,3$-median $\ll 1.73$ (Guruswami-Indyk'03)

Continuous Version:

$$
\begin{gathered}
k \text {-means in Euclidean metric }<1.36 \\
\text { (Lee-Schmidt-Wright'17) }
\end{gathered}
$$

Hardness of Approximation

Discrete Version:

© General metric: k-means ≈ 3.94, k-median ≈ 1.74
(Guha-Khuller'99)
© ℓ_{2}-metric: k-means $\ll 1.73,1.17,1$-median $\ll 1.27,1.06$ (Trevisan'oo)
© ℓ_{1}-metric: k-means $\ll \frac{3.94,1.56}{1.91}$, k-median $\ll 1.73,1.14$
(Trevisan'oo)
© ℓ_{∞}-metric: k-means $\ll 1.01,3$ 3.94, 3.94 -median $\ll 1.73,1.73$ (Guruswami-Indyk'03)

Continuous Version:

$$
\begin{aligned}
& k \text {-means in Euclidean metric }<1.36,1.07 \\
& (\text { Lee-Schmidt-Wright'17) }
\end{aligned}
$$

Our Results (Cohen-Addad-K'19,Cohen-Addad-K-Lee)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_{1}-metric	3.94	1.73	1.56	1.14
ℓ_{2}-metric	1.73	1.27	1.17	1.06
ℓ_{∞}-metric	3.94	1.73	3.94^{*}	1.73^{*}

Our Results (Cohen-Addad-K'19,Cohen-Addad-K-Lee)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_{1}-metric	3.94	1.73	1.56	1.14
ℓ_{2}-metric	1.73	1.27	1.17	1.06
ℓ_{∞}-metric	3.94	1.73	3.94^{*}	1.73^{*}

Continuous Version

$$
\begin{aligned}
& k \text {-means in } \ell_{2} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC}) \\
& k \text {-median in } \ell_{1} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC})
\end{aligned}
$$

Our Results (Cohen-Addad-K'19,Cohen-Addad-K-Lee)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_{1}-metric	3.94	1.73	1.56	1.14
ℓ_{2}-metric	1.73	1.27	1.17	1.06
ℓ_{∞}-metric	3.94	1.73	3.94^{*}	1.73^{*}

Continuous Version

$$
\begin{aligned}
& k \text {-means in } \ell_{2} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC}) \\
& k \text {-median in } \ell_{1} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC})
\end{aligned}
$$

A New Embedding Framework to potentially get Strong (tight?) Inapproximability results!

Warm Up: General Metrics

Theorem (Guha-Khuller'99)

Fix $\varepsilon>0$. Given input (X, S, k). It is NP-hard to distinguish:

Warm Up: General Metrics

Theorem (Guha-Khuller'99)

Fix $\varepsilon>0$. Given input (X, S, k). It is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \Delta\left(x, \sigma^{*}(x)\right)^{2} \leq|X|$

Warm Up: General Metrics

Theorem (Guha-Khuller'99)

Fix $\varepsilon>0$. Given input (X, S, k). It is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \Delta\left(x, \sigma^{*}(x)\right)^{2} \leq|X|$
NO: For all (C, σ) we have $\sum_{x \in X} \Delta(x, \sigma(x))^{2} \geq(1+8 / e-\varepsilon) \cdot|X|$

Max Coverage:
© Input: Universe and Collection of Subsets (U, \mathcal{S}, k)

Proof Overview: General Metrics

Max Coverage:
© Input: Universe and Collection of Subsets (U, S, k)
© Objective: Max Fraction of U covered by k subsets in \mathcal{S}

Proof Overview: General Metrics

Max Coverage:
© Input: Universe and Collection of Subsets (U, S, k)
© Objective: Max Fraction of U covered by k subsets in δ

Theorem (Feige'98)

Fix $\varepsilon>0$. It is NP-hard to distinguish:

Proof Overview: General Metrics

Max Coverage:
© Input: Universe and Collection of Subsets (U, S, k)
© Objective: Max Fraction of U covered by k subsets in \mathcal{S}

Theorem (Feige'98)

Fix $\varepsilon>0$. It is NP-hard to distinguish:
YES: Max Coverage is 1

Proof Overview: General Metrics

Max Coverage:
© Input: Universe and Collection of Subsets (U, S, k)
© Objective: Max Fraction of U covered by k subsets in δ

Theorem (Feige'98)

Fix $\varepsilon>0$. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most $1-1 / e+\varepsilon$

Proof Overview: General Metrics

Theorem (Feige'98)
Fix $\varepsilon>0$. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most $1-1 / e+\varepsilon$

Proof Overview: General Metrics

Theorem (Feige'98)

Fix $\varepsilon>0$. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most $1-1 / e+\varepsilon$

Theorem (Guha-Khuller'99)

Fix $\varepsilon>0$. Given input (X, S, k). It is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \Delta\left(x, \sigma^{*}(x)\right)^{2} \leq|X|$
NO: For all (C, σ) we have $\sum_{x \in X} \Delta(x, \sigma(x))^{2} \geq(1+8 / e-\varepsilon) \cdot|X|$

Proof Overview: General Metrics

Proof Overview: General Metrics

Max Coverage

Proof Overview: General Metrics

Max Coverage

Warm Up: General Metrics

Theorem (Guha-Khuller'99)

Fix $\varepsilon>0$. Given input (X, S, k). It is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \Delta\left(x, \sigma^{*}(x)\right)^{2} \leq|X|$
NO: For all (C, σ) we have $\sum_{x \in X} \Delta(x, \sigma(x))^{2} \geq(1+8 / e-\varepsilon) \cdot|X|$

Johnson Coverage Hypothesis

Johnson Coverage Hypothesis

Johnson Coverage Hypothesis (Cohen-Addad-K-Lee)

Fix $\varepsilon>0$. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most $1-1 / e+\varepsilon$
even when set system is induced subgraph of Johnson graph.

Johnson Coverage Hypothesis

(α, t)-Johnson Coverage Problem

Given $E \subseteq\binom{[n]}{t}$, and k as input, distinguish between:
Completeness: There exists $\mathscr{C}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{t-1}$ such that

$$
\forall T \in E, \exists S_{i} \in \mathscr{C}, S_{i} \subset T .
$$

Soundness: For every $\mathscr{C}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{t-1}$ we have

$$
\operatorname{Pr}_{T \sim E}\left[\exists S_{i}, S_{i} \subset T\right] \leq \alpha .
$$

Johnson Coverage Hypothesis

(α, t)-Johnson Coverage Problem

Given $E \subseteq\binom{[n]}{t}$, and k as input, distinguish between:
Completeness: There exists $\mathscr{C}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{t-1}$ such that

$$
\forall T \in E, \exists S_{i} \in \mathscr{C}, S_{i} \subset T
$$

Soundness: For every $\mathscr{C}:=\left\{S_{1}, \ldots, S_{k}\right\} \subseteq\binom{[n]}{t-1}$ we have

$$
\operatorname{Pr}_{T \sim E}\left[\exists S_{i}, S_{i} \subset T\right] \leq \alpha .
$$

Johnson Coverage Hypothesis (Cohen-Addad-K-Lee)

$\forall \varepsilon>0, \exists t_{\varepsilon} \in \mathbb{N}$ such that $\left(1-\frac{1}{e}+\varepsilon, t_{\varepsilon}\right)$-Johnson Coverage problem is NP-hard.

Johnson Coverage Hypothesis: What can we show?

๑ $t=2$: Vertex Coverage problem

Johnson Coverage Hypothesis: What can we show?

© $t=2$: Vertex Coverage problem

- ≈ 0.9292 gap is tight!

Johnson Coverage Hypothesis: What can we show?

© $t=2$: Vertex Coverage problem

- ≈ 0.9292 gap is tight!
© 3-Hypergraph Vertex Coverage problem is NP-Hard to approximate to a factor of $7 / 8$

3 ingredients
© JCH instance

3 ingredients

© JCH instance
© Dimensionality reduction for all ℓ_{p}-metrics

- Works only for JCH instances
- Arises from transcript of a communication game

3 ingredients

© JCH instance
© Dimensionality reduction for all ℓ_{p}-metrics

- Works only for JCH instances
- Arises from transcript of a communication game
© Johnson Graph Embedding into ℓ_{p}-metrics

Our Results (Cohen-Addad-K'19,Cohen-Addad-K-Lee)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_{1}-metric	3.94	1.73	1.56	1.14
ℓ_{2}-metric	1.73	1.27	1.17	1.06
ℓ_{∞}-metric	3.94	1.73	3.94^{*}	1.73^{*}

Our Results (Cohen-Addad-K'19,Cohen-Addad-K-Lee)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_{1}-metric	3.94	1.73	1.56	1.14
ℓ_{2}-metric	1.73	1.27	1.17	1.06
ℓ_{∞}-metric	3.94	1.73	3.94^{*}	1.73^{*}

Continuous Version

$$
\begin{aligned}
& k \text {-means in } \ell_{2} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC}) \\
& k \text {-median in } \ell_{1} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC})
\end{aligned}
$$

Our Results (Cohen-Addad-K'19,Cohen-Addad-K-Lee)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_{1}-metric	3.94	1.73	1.56	1.14
ℓ_{2}-metric	1.73	1.27	1.17	1.06
ℓ_{∞}-metric	3.94	1.73	3.94^{*}	1.73^{*}

Continuous Version

$$
\begin{aligned}
& k \text {-means in } \ell_{2} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC}) \\
& k \text {-median in } \ell_{1} \text {-metric } \approx 1.36(\mathrm{JCH}), 1.07(\mathrm{UGC})
\end{aligned}
$$

Continuous k-means and k-median

Continuous k-means and k-median

Theorem (Cohen-Addad-K-Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:

Continuous k-means and k-median

Theorem (Cohen-Addad-K-Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \|\left(x-\sigma^{*}(x) \|_{\infty}^{2} \leq n^{\prime}\right.$,
NO: For all (C, σ) we have $\sum_{x \in X} \|\left(x-\sigma(x) \|_{\infty}^{2} \geq 4 \cdot n^{\prime}\right.$.

Continuous k-means and k-median

Theorem (Cohen-Addad-K-Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \|\left(x-\sigma^{*}(x) \|_{\infty}^{2} \leq n^{\prime}\right.$,
NO: For all (C, σ) we have $\sum_{x \in X} \|\left(x-\sigma(x) \|_{\infty}^{2} \geq 4 \cdot n^{\prime}\right.$.
© k-median: 2 inapproximability

Continuous k-means and k-median

Theorem (Cohen-Addad-K-Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \|\left(x-\sigma^{*}(x) \|_{\infty}{ }^{2} \leq n^{\prime}\right.$,
NO: For all (C, σ) we have $\sum_{x \in X} \|\left(x-\sigma(x) \|_{\infty}^{2} \geq 4 \cdot n^{\prime}\right.$.
© k-median: 2 inapproximability

Continuous is harder than Discrete!

Continuous k-means and k-median

Theorem (Cohen-Addad-K-Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \|\left(x-\sigma^{*}(x) \|_{\infty}^{2} \leq n^{\prime}\right.$,
NO: For all (C, σ) we have $\sum_{x \in X} \|\left(x-\sigma(x) \|_{\infty}^{2} \geq 4 \cdot n^{\prime}\right.$.
© k-median: 2 inapproximability

Continuous is harder than Discrete!
© Constant Bicriteria inapproximability

Continuous k-means and k-median

Theorem (Cohen-Addad-K-Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \|\left(x-\sigma^{*}(x) \|_{\infty}^{2} \leq n^{\prime}\right.$,
NO: For all (C, σ) we have $\sum_{x \in X} \|\left(x-\sigma(x) \|_{\infty}^{2} \geq 4 \cdot n^{\prime}\right.$.
© k-median: 2 inapproximability

Continuous is harder than Discrete!
© Constant Bicriteria inapproximability
© Assuming UGC, hardness for $k=2$!

Continuous k-means and k-median

Theorem (Cohen-Addad-K-Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \|\left(x-\sigma^{*}(x) \|_{\infty}^{2} \leq n^{\prime}\right.$,
NO: For all (C, σ) we have $\sum_{x \in X} \|\left(x-\sigma(x) \|_{\infty}^{2} \geq 4 \cdot n^{\prime}\right.$.
© k-median: 2 inapproximability

Continuous is harder than Discrete!
© Constant Bicriteria inapproximability
© Assuming UGC, hardness for $k=2$!
© Dependency on d, k, and ℓ_{∞} tight

Minsum (Definition)

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma, k \in \mathbb{N}$

Minsum (Definition)

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma, k \in \mathbb{N}$
© Output: A partition $X:=X_{1} \dot{U} X_{2} \dot{U} \cdots \dot{U} X_{k}$ that minimizes:

Minsum (Definition)

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma, k \in \mathbb{N}$
© Output: A partition $X:=X_{1} \dot{U} X_{2} \dot{U} \cdots \dot{U} X_{k}$ that minimizes:

$$
\sum_{i \in[k]} \sum_{x, y \in X_{i}} \Delta(x, y)
$$

Minsum (Definition)

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma, k \in \mathbb{N}$
© Output: A partition $X:=X_{1} \dot{U} X_{2} \dot{U} \cdots \dot{U} X_{k}$ that minimizes:

$$
\sum_{i \in[k]} \sum_{x, y \in X_{i}} \Delta(x, y)
$$

© Approximation: $O(\log n)$ [Behsaz et al.'15]

Minsum (Definition)

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma, k \in \mathbb{N}$
© Output: A partition $X:=X_{1} \dot{U} X_{2} \dot{U} \cdots \dot{U} X_{k}$ that minimizes:

$$
\sum_{i \in[k]} \sum_{x, y \in X_{i}} \Delta(x, y)
$$

© Approximation: $O(\log n)$ [Behsaz et al.'15]
© Hardness: $1+\varepsilon$ [Guruswami-Indyk'o3]

Minsum (Result)

Theorem (Cohen-Addad-K-Lee'21)
 Given input (X, k), it is NP-hard to distinguish:

Minsum (Result)

Theorem (Cohen-Addad-K-Lee'21)

Given input (X, k), it is NP-hard to distinguish:
YES: There exists a partition $X:=X_{1} \dot{U} X_{2} \dot{U} \cdots \dot{U} X_{k}$ such that

$$
\sum_{i \in[k]} \sum_{x, y \in X_{i}} \Delta(x, y) \leq n^{\prime}
$$

Minsum (Result)

Theorem (Cohen-Addad-K-Lee'21)

Given input (X, k), it is NP-hard to distinguish:
YES: There exists a partition $X:=X_{1} \dot{U} X_{2} \dot{U} \cdots \dot{U} X_{k}$ such that

$$
\sum_{i \in[k]} \sum_{x, y \in X_{i}} \Delta(x, y) \leq n^{\prime}
$$

NO: For every partition $X:=X_{1} \dot{U} X_{2} \dot{U} \cdots \dot{U} X_{k}$ we have

$$
\sum_{i \in[k]} \sum_{x, y \in X_{i}} \Delta(x, y) \geq 1.41 \cdot n^{\prime}
$$

Minsum (Result)

Theorem (Cohen-Addad-K-Lee'21)

Given input (X, k), it is NP-hard to distinguish:
YES: There exists a partition $X:=X_{1} \dot{U} X_{2} \dot{U} \cdots \dot{U} X_{k}$ such that

$$
\sum_{i \in[k]} \sum_{x, y \in X_{i}} \Delta(x, y) \leq n^{\prime}
$$

NO: For every partition $X:=X_{1} \dot{U} X_{2} \dot{U} \cdots \dot{U} X_{k}$ we have

$$
\sum_{i \in[k]} \sum_{x, y \in X_{i}} \Delta(x, y) \geq 1.41 \cdot n^{\prime}
$$

Key Ingredient: Hard Instances of Max-Coverage with large girth

Key Takeaways

Improved Inapproximability of

Key Takeaways

Improved Inapproximability of
© k-means and k-median in ℓ_{p}-metric using JCH framework

Key Takeaways

Improved Inapproximability of
© k-means and k-median in ℓ_{p}-metric using JCH framework
© Continuous versions of k-means and k-median in General metric

Key Takeaways

Improved Inapproximability of
© k-means and k-median in ℓ_{p}-metric using JCH framework
© Continuous versions of k-means and k-median in General metric
© k-minsum in General metric

THANK
 YOU!

