Hardness of Approximation for Metric Clustering

Karthik C. S.

(Rutgers University)

March 4th 2022

Classifying Handwritten Digits

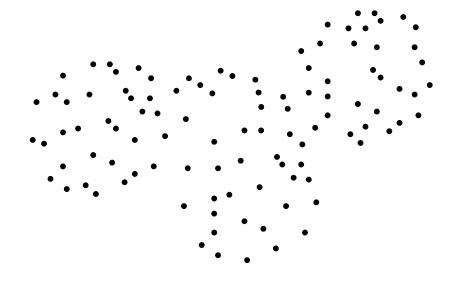
```
1566836894
2202856S51
63880154/5
21980336# \
7914992481
3739367243
3519744349
0160528887
5672970289
0471266010
```

Classifying Handwritten Digits

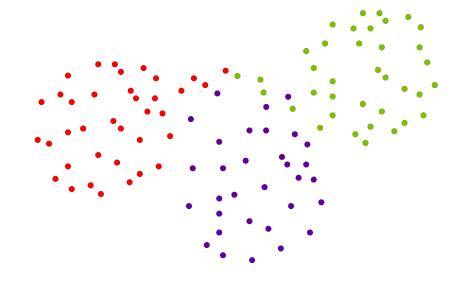
63880154/5 1980336#1 *5*1974**93**49

 28×28 grayscale image

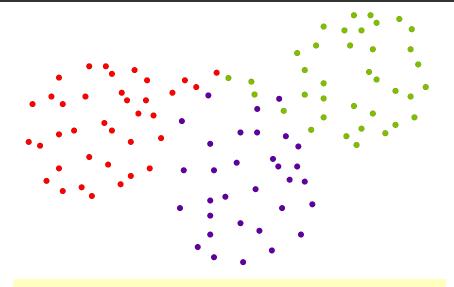
Clustering: Abstraction



Clustering: Abstraction



Clustering: Abstraction



Task of Classifying Input Data

- Reveal internal structure of data
 - Clustering gene expression

- Reveal internal structure of data
 - Clustering gene expression
- Partition data
 - Market segmentation

- Reveal internal structure of data
 - Clustering gene expression
- Partition data
 - Market segmentation
- Data Preparation
 - Summarize news

- Reveal internal structure of data
 - Clustering gene expression
- Partition data
 - Market segmentation
- O Data Preparation
 - Summarize news
- Data Exploration
 - Underlying rules and Reoccurring patterns

 \odot (Γ, Δ) is a metric space

- \odot (Γ , Δ) is a metric space
- ○Input: X ⊆ Γ, k ∈ ℕ

- \odot (Γ , Δ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- \odot Output: A classification (C, σ):

- \odot (Γ , Δ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- \odot Output: A classification (C, σ):
 - \circ *C* ⊆ Γ and |C| = k

- \odot (Γ , Δ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- ⊚ Output: A classification (C, σ):
 - \circ *C* ⊆ Γ and |C| = k
 - $\circ \sigma: X \to C$

- \odot (Γ , Δ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- ⊚ Output: A classification (C, σ):
 - \circ *C* ⊆ Γ and |C| = k
 - $\circ \ \sigma: X \to C$
 - \circ σ is good

Continuous Version

- \odot (Γ , Δ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- ⊚ Output: A classification (C, σ):
 - \circ *C* ⊆ Γ and |C| = k
 - $\circ \ \sigma: X \to C$
 - \circ σ is good

Discrete Continuous Version

- \odot (Γ , Δ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- ⊚ Output: A classification (C, σ):
 - \circ *C* ⊆ Γ and |C| = k
 - $\circ \ \sigma: X \to C$
 - \circ σ is good

Discrete Continuous Version

- \odot (Γ , Δ) is a metric space
- ⊚ Input: $X \subseteq \Gamma$, $k \in \mathbb{N}$ and $S \subseteq \Gamma$
- \bigcirc Output: A classification (C, σ):
 - \circ $C \subseteq X$ and |C| = k
 - $\circ \ \sigma: X \to C$
 - \circ σ is good

⊚ *k*-means, *k*-median, *k*-center, min-sum, correlation clustering . . .

- ⊚ *k*-means, *k*-median, *k*-center, min-sum, correlation clustering . . .
- \odot *k*-center value of (C, σ)

$$\max_{x \in X} \Delta(x, \sigma(x))$$

- ⊚ *k*-means, *k*-median, *k*-center, min-sum, correlation clustering . . .
- \odot *k*-center value of (C, σ)

$$\max_{x \in X} \Delta(x, \sigma(x))$$

 \odot *k*-median value of (C, σ)

$$\sum_{x \in X} \Delta(x, \sigma(x))$$

- ⊚ *k*-means, *k*-median, *k*-center, min-sum, correlation clustering . . .
- \odot *k*-center value of (C, σ)

$$\max_{x \in X} \Delta(x, \sigma(x))$$

 \odot *k*-median value of (C, σ)

$$\sum_{x \in X} \Delta(x, \sigma(x))$$

 \odot *k*-means value of (C, σ)

$$\sum_{x \in Y} \Delta(x, \sigma(x))^{2}$$

- ⊚ *k*-means, *k*-median, *k*-center, min-sum, correlation clustering . . .
- \odot *k*-center value of (C, σ)

$$\max_{x \in X} \Delta(x, \sigma(x))$$

 \odot *k*-median value of (C, σ)

$$\sum_{x \in X} \Delta(x, \sigma(x))$$

 \odot *k*-means value of (C, σ)

$$\sum_{x \in X} \Delta(x, \sigma(x))^{2}$$

On't fit: Facility Location, Hierarchical Clustering . . .

Given (X, S, k) as input find a classification (C, σ) that minimizes the Clustering objective

Given (X, S, k) as input find a classification (C, σ) that minimizes the Clustering objective

Clustering Problem for objective Λ

Given (X, S, k) as input find a classification (C, σ) that minimizes the Clustering objective

Clustering Problem for objective Λ

Yes: There is classification (C^*, σ^*) , such that $\Lambda(X, \sigma^*) \leq \beta$

Given (X, S, k) as input find a classification (C, σ) that minimizes the Clustering objective

Clustering Problem for objective Λ

Yes: There is classification (C^*, σ^*) , such that $\Lambda(X, \sigma^*) \leq \beta$

No: For all classification (C, σ) , we have $\Lambda(X, \sigma) > \beta$

The Bitter Truth

NP-Hard

Salvaging Bitterness

Efficient Approximation

Truth cannot be Salvaged

NP-Hard to Approximate

Many important problems are not tractable

- Many important problems are not tractable
- Need to cope with the intractability

- Many important problems are not tractable
- Need to cope with the intractability
- Design algorithms that find solutions whose cost or value is close to the optimum

- Many important problems are not tractable
- Need to cope with the intractability
- Design algorithms that find solutions whose cost or value is close to the optimum
- For some fundamental problems finding good approximate solutions is as hard as finding optimal solutions

- Many important problems are not tractable
- Need to cope with the intractability
- Design algorithms that find solutions whose cost or value is close to the optimum
- For some fundamental problems finding good approximate solutions is as hard as finding optimal solutions
- Area studying such results: Hardness of Approximation

Given (X, S, k) as input find a classification (C, σ) that approximately minimizes the Clustering objective

Given (X, S, k) as input find a classification (C, σ) that approximately minimizes the Clustering objective

Clustering Problem for objective Λ

Given (X, S, k) as input find a classification (C, σ) that approximately minimizes the Clustering objective

Clustering Problem for objective Λ

Yes: There is classification (C^*, σ^*) , such that $\Lambda(X, \sigma^*) \leq \beta$

Given (X, S, k) as input find a classification (C, σ) that approximately minimizes the Clustering objective

Clustering Problem for objective Λ

Yes: There is classification (C^*, σ^*) , such that $\Lambda(X, \sigma^*) \leq \beta$

No: For all classification (C, σ) , we have $\Lambda(X, \sigma) > (1 + \delta) \cdot \beta$

k-center

k-center modeling

⊚ Input: $X, S \subseteq \mathbb{R}^d, k \in \mathbb{N}$

k-center modeling

- ⊚ Input: $X, S \subseteq \mathbb{R}^d$, $k \in \mathbb{N}$
- ⊚ Output: A classification (C, σ):
 - \circ $C \subseteq S$ and |C| = k
 - $\circ \sigma: X \to C$
 - (C, σ) minimizes $\max_{x \in X} ||x \sigma(x)||_p$

State-of-the-art: General Metrics

NP-hard [FPT81]

State-of-the-art: General Metrics

- NP-hard [FPT81]
- Poly Time 3-approximation (Gonzalez Algorithm)

State-of-the-art: General Metrics

- NP-hard [FPT81]
- Poly Time 3-approximation (Gonzalez Algorithm)
- ⊚ NP-Hard to approximate to 3 o(1) factor! [FPT81]

State-of-the-art: ℓ_p Metrics

- \odot ℓ_1 and ℓ_∞ metrics
 - Poly Time 3-approximation

State-of-the-art: ℓ_p Metrics

- \circ ℓ_1 and ℓ_∞ metrics
 - Poly Time 3-approximation
 - NP-Hard to approximate to 3 o(1) factor! [FG88]
- Euclidean metric
 - Poly Time 2.74-approximation! [NSS₁₃]

State-of-the-art: ℓ_p Metrics

- \circ ℓ_1 and ℓ_∞ metrics
 - Poly Time 3-approximation
 - NP-Hard to approximate to 3 o(1) factor! [FG88]
- Euclidean metric
 - Poly Time 2.74-approximation! [NSS13]
 - NP-Hard to approximate to 2.65 factor [FG88]

Max Coverage:

 \odot Input: Universe and Collection of Subsets (U, 8, k)

Max Coverage:

- \odot Input: Universe and Collection of Subsets (U, δ, k)
- ⊙ Objective: Max Fraction of *U* covered by *k* subsets in 8

Max Coverage:

- \odot Input: Universe and Collection of Subsets (U, δ, k)
- ⊚ Objective: Max Fraction of *U* covered by *k* subsets in *S*

Theorem (Karp'72)

It is NP-hard to distinguish:

Max Coverage:

- \odot Input: Universe and Collection of Subsets (U, δ , k)
- ⊚ Objective: Max Fraction of *U* covered by *k* subsets in *⊗*

Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Max Coverage is 1

Max Coverage:

- \odot Input: Universe and Collection of Subsets (U, δ, k)
- ⊚ Objective: Max Fraction of *U* covered by *k* subsets in *⊗*

Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is < 1

Theorem (Karp'72)

It is NP-hard to distinguish:

Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Max Coverage is 1

Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is < 1

Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Max Coverage is 1

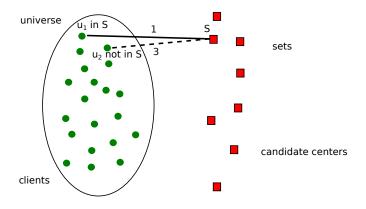
NO: Max Coverage is < 1

Theorem (Fowler-Paterson-Tanimoto'81)

Fix $\varepsilon > 0$. Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\max_{x \in X} \Delta(x, \sigma^*(x)) \le 1$

NO: For all (C, σ) we have $\max_{x \in X} \Delta(x, \sigma(x)) \ge 3$



Theorem (Fowler-Paterson-Tanimoto'81)

Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\max_{x \in X} \Delta(x, \sigma^*(x)) \le 1$

NO: For all (C, σ) we have $\max_{x \in X} \Delta(x, \sigma(x)) \ge 3$

k-means & *k*-median

k-means and k-median modeling

 $\odot \underline{\text{Input: } X, S \subseteq \mathbb{R}^d, k \in \mathbb{N}$

k-means and k-median modeling

- ⊚ Input: $X, S \subseteq \mathbb{R}^d$, $k \in \mathbb{N}$
- ⊚ Output: A classification (C, σ):
 - \circ $C \subseteq S$ and |C| = k
 - $\circ \sigma: X \to C$
 - *k*-means: (C, σ) minimizes $\sum_{x \in X} ||x \sigma(x)||_{\mathbf{p}}^2$
 - *k*-median: (C, σ) minimizes $\sum_{x \in X} ||x \sigma(x)||_p$

Exact Computation

 \odot NP-hard when k = 2 (Dasgupta'07)

Exact Computation

- \odot NP-hard when k = 2 (Dasgupta'07)
- NP-hard in Euclidean plane
 (Megiddo–Supowit'84,
 Mahajan–Nimbhorkar–Varadarajan'12)

Exact Computation

- \odot NP-hard when k = 2 (Dasgupta'07)
- NP-hard in Euclidean plane
 (Megiddo–Supowit'84,
 Mahajan–Nimbhorkar–Varadarajan'12)
- ⊚ W[2]-hard in general metric (Guha-Khuller'99)

⊚ General metric: k-means ≥ 9(Ahmadian–Norouzi-Fard–Svensson–Ward'17)

- ⊚ General metric: k-means ≥ 9(Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ⊚ General metric: k-median ≥ 2.67(Byrka–Pensyl–Rybicki–Srinivasan–Trinh'17)

- ⊚ General metric: k-means ≥ 9(Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ⊚ General metric: k-median ≥ 2.67(Byrka–Pensyl–Rybicki–Srinivasan–Trinh'17)
- © Euclidean metric *k*-means:

- ⊚ General metric: k-means ≥ 9(Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ⊚ General metric: k-median ≥ 2.67
 (Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)
- © Euclidean metric k-means:
 - Poly time approximation ≈ 6.357
 (Ahmadian–Norouzi-Fard–Svensson–Ward'17)

- ⊚ General metric: k-means ≥ 9(Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ⊚ General metric: k-median ≥ 2.67(Byrka–Pensyl–Rybicki–Srinivasan–Trinh'17)
- © Euclidean metric k-means:
 - Poly time approximation ≈ 6.357
 (Ahmadian–Norouzi-Fard–Svensson–Ward'17)
 - Fixed Dimension: PTAS (Cohen-Addad'18)

- ⊚ General metric: k-means ≥ 9(Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ⊚ General metric: k-median ≥ 2.67
 (Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)
- © Euclidean metric *k*-means:
 - Poly time approximation ≈ 6.357
 (Ahmadian–Norouzi-Fard–Svensson–Ward'17)
 - Fixed Dimension: PTAS (Cohen-Addad'18)
 - Fixed *k*: PTAS (Kumar–Sabharwal–Sen′10)

Discrete Version:

Discrete Version:

⊚ General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)

Discrete Version:

- ⊚ General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)
- ⊚ ℓ_2 -metric: k-means \ll 1.01, k-median \ll 1.01 (Trevisan'00)
- ⊚ ℓ_1 -metric: k-means \ll 1.01, k-median \ll 1.01 (Trevisan'00)

Discrete Version:

- ⊚ General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)
- ⊚ ℓ_2 -metric: k-means \ll 1.01, k-median \ll 1.01 (Trevisan'00)
- ⊚ ℓ_1 -metric: k-means \ll 1.01, k-median \ll 1.01 (Trevisan'00)
- ⊚ ℓ_{∞} -metric: k-means \ll 1.01, k-median \ll 1.01 (Guruswami-Indyk'03)

Discrete Version:

- ⊚ General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)
- ⊚ ℓ_2 -metric: k-means ≪ 1.01, k-median ≪ 1.01 (Trevisan'00)
- ⊚ ℓ_1 -metric: k-means \ll 1.01, k-median \ll 1.01 (Trevisan'00)
- ⊚ ℓ_{∞} -metric: k-means \ll 1.01, k-median \ll 1.01 (Guruswami-Indyk'03)

Continuous Version:

k-means in Euclidean metric < 1.0013 (Lee-Schmidt-Wright'17)

Discrete Version:

```
⊚ General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)

⑤ \ell_2-metric: k-means ≪ 1.01, k-median ≪ 1.01 (Trevisan'00)

⑤ \ell_1-metric: k-means ≪ 1.01, k-median ≪ 1.01 (Trevisan'00)

⑥ \ell_\infty-metric: k-means ≪ 1.01, k-median ≪ 1.73 (Guruswami-Indyk'03)
```

Continuous Version:

```
k-means in Euclidean metric < \frac{1.36}{1.0013} (Lee-Schmidt-Wright'17)
```

Discrete Version:

```
© General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)

© \ell_2-metric: k-means ≪ 1.01, k-median ≪ 1.27, 1.06 (Trevisan'00)

© \ell_1-metric: k-means ≪ 1.01, k-median ≪ 1.01 (Trevisan'00)

© \ell_2-metric: k-means ≪ 1.01, k-median ≪ 1.01 (Trevisan'00)

© \ell_\infty-metric: k-means ≪ 1.01, k-median ≪ 1.73, 1.73 (Guruswami-Indyk'03)
```

Continuous Version:

```
k-means in Euclidean metric < \frac{1.36}{1.0013} (Lee-Schmidt-Wright'17)
```

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_1 -metric	3.94	1.73	1.56	1.14
ℓ_2 -metric	1.73	1.27	1.17	1.06
ℓ_∞ -metric	3.94	1.73	3.94*	1.73*

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_1 -metric	3.94	1.73	1.56	1.14
ℓ_2 -metric	1.73	1.27	1.17	1.06
ℓ_∞ -metric	3.94	1.73	3.94*	1.73*

Continuous Version

k-means in ℓ_2 -metric ≈ 1.36 (JCH), 1.07 (UGC) *k*-median in ℓ_1 -metric ≈ 1.36 (JCH), 1.07 (UGC)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_1 -metric	3.94	1.73	1.56	1.14
ℓ_2 -metric	1.73	1.27	1.17	1.06
ℓ_∞ -metric	3.94	1.73	3.94*	1.73*

Continuous Version

k-means in ℓ_2 -metric ≈ 1.36 (JCH), 1.07 (UGC) k-median in ℓ_1 -metric ≈ 1.36 (JCH), 1.07 (UGC)

A New Embedding Framework to potentially get Strong (tight?) Inapproximability results!

Theorem (Guha-Khuller'99)

Fix $\varepsilon > 0$. Given input (X, S, k). It is NP-hard to distinguish:

Theorem (Guha-Khuller'99)

Fix $\varepsilon > 0$. Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\sum_{x \in X} \Delta(x, \sigma^*(x))^2 \leq |X|$

Theorem (Guha-Khuller'99)

Fix $\varepsilon > 0$. Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists
$$(C^*, \sigma^*)$$
 such that $\sum_{x \in X} \Delta(x, \sigma^*(x))^2 \le |X|$

NO: For all
$$(C, \sigma)$$
 we have $\sum_{x \in X} \Delta(x, \sigma(x))^2 \ge (1 + 8/e - \varepsilon) \cdot |X|$

Max Coverage:

 \odot Input: Universe and Collection of Subsets (U, 8, k)

Max Coverage:

- \odot Input: Universe and Collection of Subsets (U, δ, k)
- ⊚ Objective: Max Fraction of *U* covered by *k* subsets in *⊗*

Max Coverage:

- \odot Input: Universe and Collection of Subsets (U, δ, k)
- ⊚ Objective: Max Fraction of *U* covered by *k* subsets in *⊗*

Theorem (Feige'98)

Fix $\varepsilon > 0$. It is NP-hard to distinguish:

Max Coverage:

- \odot Input: Universe and Collection of Subsets (U, δ, k)
- ⊚ Objective: Max Fraction of *U* covered by *k* subsets in *⊗*

Theorem (Feige'98)

Fix $\varepsilon > 0$. It is NP-hard to distinguish:

YES: Max Coverage is 1

Max Coverage:

- \odot Input: Universe and Collection of Subsets (U, δ, k)
- ⊙ Objective: Max Fraction of *U* covered by *k* subsets in *S*

Theorem (Feige'98)

Fix $\varepsilon > 0$. It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is at most $1 - 1/e + \varepsilon$

Theorem (Feige'98)

Fix $\varepsilon > 0$. It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is at most $1 - 1/e + \varepsilon$

Theorem (Feige'98)

Fix $\varepsilon > 0$. It is NP-hard to distinguish:

YES: Max Coverage is 1

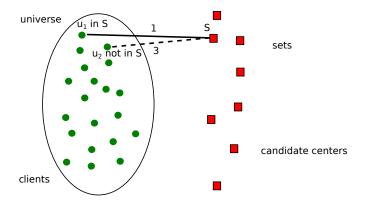
NO: Max Coverage is at most $1 - 1/e + \varepsilon$

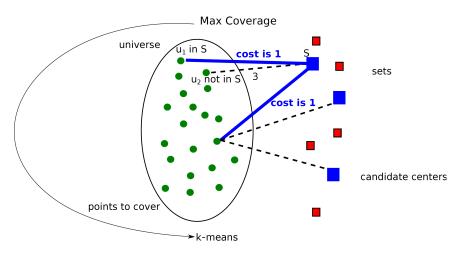
Theorem (Guha-Khuller'99)

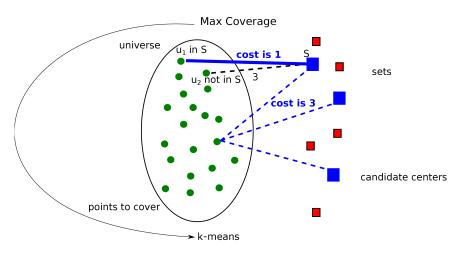
Fix $\varepsilon > 0$. Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\sum_{x \in X} \Delta(x, \sigma^*(x))^2 \le |X|$

NO: For all (C, σ) we have $\sum_{x \in X} \Delta(x, \sigma(x))^2 \ge (1 + 8/e - \varepsilon) \cdot |X|$





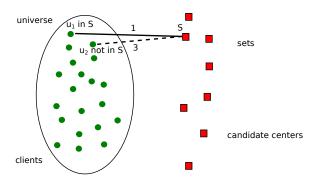


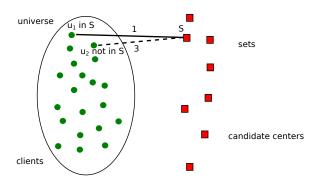
Theorem (Guha-Khuller'99)

Fix $\varepsilon > 0$. Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists
$$(C^*, \sigma^*)$$
 such that $\sum_{x \in X} \Delta(x, \sigma^*(x))^2 \le |X|$

NO: For all
$$(C, \sigma)$$
 we have $\sum_{x \in X} \Delta(x, \sigma(x))^2 \ge (1 + 8/e - \varepsilon) \cdot |X|$





Johnson Coverage Hypothesis (Cohen-Addad–K–Lee)

Fix $\varepsilon > 0$. It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is at most $1 - 1/e + \varepsilon$

even when set system is induced subgraph of Johnson graph.

(α, t) -Johnson Coverage Problem

Given $E \subseteq \binom{[n]}{t}$, and k as input, distinguish between:

Completeness: There exists $\mathscr{C} := \{S_1, \dots, S_k\} \subseteq \binom{[n]}{t-1}$ such that

$$\forall T \in E, \exists S_i \in \mathcal{C}, S_i \subset T.$$

Soundness: For every $\mathscr{C} := \{S_1, \ldots, S_k\} \subseteq \binom{[n]}{t-1}$ we have

$$\Pr_{T\sim E}[\exists S_i,\ S_i\subset T]\leq \alpha.$$

(α, t) -Johnson Coverage Problem

Given $E \subseteq \binom{[n]}{t}$, and k as input, distinguish between:

Completeness: There exists $\mathscr{C} := \{S_1, \dots, S_k\} \subseteq {n \choose t-1}$ such that

$$\forall T \in E, \ \exists S_i \in \mathcal{C}, \ S_i \subset T.$$

Soundness: For every $\mathscr{C} := \{S_1, \ldots, S_k\} \subseteq \binom{[n]}{t-1}$ we have

$$\Pr_{T\sim E}[\exists S_i,\ S_i\subset T]\leq \alpha.$$

Johnson Coverage Hypothesis (Cohen-Addad–K–Lee)

 $\forall \varepsilon > 0, \exists t_{\varepsilon} \in \mathbb{N} \text{ such that } (1 - \frac{1}{e} + \varepsilon, t_{\varepsilon})\text{-Johnson Coverage problem is NP-hard.}$

Johnson Coverage Hypothesis: What can we show?

 \odot t = 2: Vertex Coverage problem

Johnson Coverage Hypothesis: What can we show?

- \odot *t* = 2: Vertex Coverage problem
 - o ≈0.9292 gap is tight!

Johnson Coverage Hypothesis: What can we show?

- t = 2: Vertex Coverage problem ≈0.9292 gap is tight!
- 3-Hypergraph Vertex Coverage problem is NP-Hard to approximate to a factor of 7/8

3 ingredients

3 ingredients

O JCH instance

3 ingredients

- O ICH instance
- © Dimensionality reduction for all ℓ_p -metrics
 - Works only for JCH instances
 - Arises from transcript of a communication game

3 ingredients

- O JCH instance
- © Dimensionality reduction for all ℓ_p -metrics
 - Works only for JCH instances
 - Arises from transcript of a communication game
- ⊚ Johnson Graph Embedding into ℓ_p -metrics

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_1 -metric	3.94	1.73	1.56	1.14
ℓ_2 -metric	1.73	1.27	1.17	1.06
ℓ_∞ -metric	3.94	1.73	3.94*	1.73*

Our Results (Cohen-Addad–K'19,Cohen-Addad–K–Lee)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_1 -metric	3.94	1.73	1.56	1.14
ℓ_2 -metric	1.73	1.27	1.17	1.06
ℓ_∞ -metric	3.94	1.73	3.94*	1.73*

Continuous Version

k-means in ℓ_2 -metric ≈ 1.36 (JCH), 1.07 (UGC) *k*-median in ℓ_1 -metric ≈ 1.36 (JCH), 1.07 (UGC)

Our Results (Cohen-Addad–K'19,Cohen-Addad–K–Lee)

Discrete Version

	k-means (JCH)	k-median (JCH)	k-means (UGC)	k-median (UGC)
ℓ_1 -metric	3.94	1.73	1.56	1.14
ℓ_2 -metric	1.73	1.27	1.17	1.06
ℓ_∞ -metric	3.94	1.73	3.94*	1.73*

Continuous Version

k-means in ℓ_2 -metric ≈ 1.36 (JCH), 1.07 (UGC) *k*-median in ℓ_1 -metric ≈ 1.36 (JCH), 1.07 (UGC)

Theorem (Cohen-Addad-K-Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:

Theorem (Cohen-Addad–K–Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\sum_{x \in X} ||(x - \sigma^*(x))||_{\infty}^2 \le n'$,

NO: For all (C, σ) we have $\sum_{x \in X} ||(x - \sigma(x))||_{\infty}^2 \ge 4 \cdot n'$.

Theorem (Cohen-Addad–K–Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\sum_{x \in X} ||(x - \sigma^*(x))||_{\infty}^2 \le n'$,

NO: For all (C, σ) we have $\sum_{x \in X} ||(x - \sigma(x))||_{\infty}^2 \ge 4 \cdot n'$.

⊚ *k*-median: 2 inapproximability

Theorem (Cohen-Addad–K–Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\sum_{x \in X} \|(x - \sigma^*(x))\|_{\infty}^2 \le n'$,

NO: For all (C, σ) we have $\sum_{x \in X} ||(x - \sigma(x))||_{\infty}^2 \ge 4 \cdot n'$.

⊚ *k*-median: 2 inapproximability

Continuous is harder than Discrete!

Theorem (Cohen-Addad–K–Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\sum_{x \in X} \|(x - \sigma^*(x))\|_{\infty}^2 \le n'$,

NO: For all (C, σ) we have $\sum_{x \in X} ||(x - \sigma(x))||_{\infty}^2 \ge 4 \cdot n'$.

⊚ *k*-median: 2 inapproximability

Continuous is harder than Discrete!

Constant Bicriteria inapproximability

Theorem (Cohen-Addad–K–Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\sum_{x \in X} \|(x - \sigma^*(x))\|_{\infty}^2 \le n'$,

NO: For all (C, σ) we have $\sum_{x \in X} ||(x - \sigma(x))||_{\infty}^2 \ge 4 \cdot n'$.

⊚ *k*-median: 2 inapproximability

Continuous is harder than Discrete!

- © Constant Bicriteria inapproximability
- \odot Assuming UGC, hardness for k = 2!

Theorem (Cohen-Addad–K–Lee'21)

Given input $X \subseteq \mathbb{R}^{O(n)}$, it is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\sum_{x \in X} ||(x - \sigma^*(x))||_{\infty}^2 \le n'$,

NO: For all (C, σ) we have $\sum_{x \in X} ||(x - \sigma(x))||_{\infty}^2 \ge 4 \cdot n'$.

⊚ *k*-median: 2 inapproximability

Continuous is harder than Discrete!

- Constant Bicriteria inapproximability
- ⊚ Assuming UGC, hardness for k = 2!
- ⊚ Dependency on d, k, and ℓ_{∞} tight

- \odot (Γ , Δ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ

- \odot (Γ, Δ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- \odot Output: A partition $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$ that minimizes:

- \odot (Γ , Δ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- \odot Output: A partition $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$ that minimizes:

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y)$$

- \odot (Γ, Δ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- \odot Output: A partition $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$ that minimizes:

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y)$$

 \odot Approximation: $O(\log n)$ [Behsaz et al.'15]

- \odot (Γ , Δ) is a metric space
- ⊚ Input: $X \subseteq \Gamma$, $k \in \mathbb{N}$
- \odot Output: A partition $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$ that minimizes:

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y)$$

- \odot Approximation: $O(\log n)$ [Behsaz et al.'15]
- ⊚ Hardness: $1 + \varepsilon$ [Guruswami-Indyk'03]

Theorem (Cohen-Addad-K-Lee'21)

Given input (X, k), it is NP-hard to distinguish:

Theorem (Cohen-Addad–K–Lee'21)

Given input (X, k), it is NP-hard to distinguish:

YES: There exists a partition $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$ such that

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y) \leq n',$$

Theorem (Cohen-Addad–K–Lee'21)

Given input (X, k), it is NP-hard to distinguish:

YES: There exists a partition $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$ such that

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y) \leq n',$$

NO: For every partition $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$ we have

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y) \geq \mathbf{1.41} \cdot n'.$$

Theorem (Cohen-Addad-K-Lee'21)

Given input (X, k), it is NP-hard to distinguish:

YES: There exists a partition $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$ such that

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y) \leq n',$$

NO: For every partition $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$ we have

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y) \geq 1.41 \cdot n'.$$

Key Ingredient: Hard Instances of Max-Coverage with large girth

Improved Inapproximability of

Improved Inapproximability of

 \odot *k*-means and *k*-median in ℓ_p -metric using JCH framework

Improved Inapproximability of

- \circ *k*-means and *k*-median in ℓ_p -metric using JCH framework
- Continuous versions of k-means and k-median in General metric

Improved Inapproximability of

- \circ *k*-means and *k*-median in ℓ_p -metric using JCH framework
- Continuous versions of k-means and k-median in General metric
- ⊚ *k*-minsum in General metric

THANK YOU!