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Clustering: Abstraction

Task of Classifying Input Data
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Clustering: Applications

} Reveal internal structure of data

◦ Clustering gene expression

} Partition data

◦ Market segmentation

} Data Preparation

◦ Summarize news

} Data Exploration

◦ Underlying rules and Reoccurring patterns
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Clustering: Modeling

} (Γ,Δ) is a metric space

} Input: - ⊆ Γ, : ∈ ℕ and S⊆ Γ

} Output: A classification (�, �):

◦ � ⊆ Γ and |� | = :

◦ � : - → �

◦ � is good

Continuous Version
Discrete

X
S
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What is Good Classification?

} :-means, :-median, :-center, min-sum, correlation clustering . . .

} :-center value of (�, �)

max
G∈-

Δ(G, �(G))

} :-median value of (�, �) ∑
G∈-

Δ(G, �(G))

} :-means value of (�, �) ∑
G∈-

Δ(G, �(G))2

} Don’t fit: Facility Location, Hierarchical Clustering . . .
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Computational Question

Given (-, (, :) as input find a classification (�, �) that
minimizes the Clustering objective

Clustering Problem for objective Λ

No: For all classification (�, �), we have Λ(-, �) > �

Yes: There is classification (�∗ , �∗), such that Λ(-, �∗) ≤ �

6



Computational Question

Given (-, (, :) as input find a classification (�, �) that
minimizes the Clustering objective

Clustering Problem for objective Λ

No: For all classification (�, �), we have Λ(-, �) > �

Yes: There is classification (�∗ , �∗), such that Λ(-, �∗) ≤ �

6



Computational Question

Given (-, (, :) as input find a classification (�, �) that
minimizes the Clustering objective

Clustering Problem for objective Λ

No: For all classification (�, �), we have Λ(-, �) > �

Yes: There is classification (�∗ , �∗), such that Λ(-, �∗) ≤ �

6



Computational Question

Given (-, (, :) as input find a classification (�, �) that
minimizes the Clustering objective

Clustering Problem for objective Λ

No: For all classification (�, �), we have Λ(-, �) > �

Yes: There is classification (�∗ , �∗), such that Λ(-, �∗) ≤ �

6



The Bitter Truth

NP-Hard
7



Salvaging Bitterness

Efficient Approximation
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Truth cannot be Salvaged

NP-Hard to Approximate
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Hardness of Approximation

} Many important problems are not tractable

} Need to cope with the intractability

} Design algorithms that find solutions whose cost or value is
close to the optimum

} For some fundamental problems finding good approximate
solutions is as hard as finding optimal solutions

} Area studying such results: Hardness of Approximation
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New Computational Question

Given (-, (, :) as input find a classification (�, �) that
approximately minimizes the Clustering objective
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Yes: There is classification (�∗ , �∗), such that Λ(-, �∗) ≤ �
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12



:-center modeling

} Input: -, ( ⊆ ℝ3, : ∈ ℕ

} Output: A classification (�, �):

◦ � ⊆ ( and |� | = :

◦ � : - → �

◦ (�, �)minimizes maxG∈- ‖G − �(G)‖?
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State-of-the-art: General Metrics

} NP-hard [FPT81]

} Poly Time 3-approximation (Gonzalez Algorithm)

} NP-Hard to approximate to 3 − >(1) factor! [FPT81]
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Proof Overview: General Metrics

Max Coverage:

} Input: Universe and Collection of Subsets (*,S, :)

} Objective: Max Fraction of* covered by : subsets in S

Theorem (Karp’72)
It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is < 1
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Proof Overview: General Metrics

universe

clients

sets

candidate centers

3

1u1 in S S

u2 not in S
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:-means & :-median
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:-means and :-median modeling

} Input: -, ( ⊆ ℝ3, : ∈ ℕ

} Output: A classification (�, �):

◦ � ⊆ ( and |� | = :

◦ � : - → �

◦ :-means: (�, �)minimizes
∑
G∈- ‖G − �(G)‖2?

◦ :-median: (�, �)minimizes
∑
G∈- ‖G − �(G)‖?
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Exact Computation

} NP-hard when : = 2 (Dasgupta’07)

} NP-hard in Euclidean plane
(Megiddo–Supowit’84,
Mahajan–Nimbhorkar–Varadarajan’12)

} W[2]-hard in general metric (Guha-Khuller’99)
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Approximation Algorithms

} General metric: :-means ≥ 9
(Ahmadian–Norouzi-Fard–Svensson–Ward’17)

} General metric: :-median ≥ 2.67
(Byrka–Pensyl–Rybicki–Srinivasan–Trinh’17)

} Euclidean metric :-means:

◦ Poly time approximation ≈ 6.357
(Ahmadian–Norouzi-Fard–Svensson–Ward’17)

◦ Fixed Dimension: PTAS (Cohen-Addad’18)

◦ Fixed :: PTAS (Kumar–Sabharwal–Sen’10)
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Hardness of Approximation

Discrete Version:

} General metric: :-means ≈ 3.94, :-median ≈ 1.74
(Guha-Khuller’99)

} ℓ2-metric: :-means� 1.01, :-median� 1.01
(Trevisan’00)

} ℓ1-metric: :-means� 1.01, :-median� 1.01
(Trevisan’00)

} ℓ∞-metric: :-means� 1.01, :-median� 1.01
(Guruswami-Indyk’03)

Continuous Version:

:-means in Euclidean metric < 1.0013
(Lee-Schmidt-Wright’17)

1.73 1.27

3.94 1.73

3.94 1.73

1.36

, 1.17 , 1.06

, 1.56 , 1.14

, 3.94 , 1.73

, 1.07
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Our Results (Cohen-Addad–K’19,Cohen-Addad–K–Lee)

Discrete Version

:-means :-median :-means :-median
(JCH) (JCH) (UGC) (UGC)

ℓ1-metric 3.94 1.73 1.56 1.14

ℓ2-metric 1.73 1.27 1.17 1.06

ℓ∞-metric 3.94 1.73 3.94∗ 1.73∗

Continuous Version

:-means in ℓ2-metric ≈ 1.36 (JCH), 1.07 (UGC)
:-median in ℓ1-metric ≈ 1.36 (JCH), 1.07 (UGC)

A New Embedding Framework to potentially
get Strong (tight?) Inapproximability results!
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Warm Up: General Metrics

Theorem (Guha-Khuller’99)
Fix � > 0. Given input (-, (, :). It is NP-hard to distinguish:

YES: There exists (�∗ , �∗) such that
∑
G∈-

Δ(G, �∗(G))2 ≤ |- |

NO: For all (�, �)we have
∑
G∈-

Δ(G, �(G))2 ≥ (1 + 8/4 − �) · |- |
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Proof Overview: General Metrics

Max Coverage:

} Input: Universe and Collection of Subsets (*,S, :)

} Objective: Max Fraction of* covered by : subsets in S

Theorem (Feige’98)
Fix � > 0. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most 1 − 1/4 + �
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Proof Overview: General Metrics

universe

clients

sets

candidate centers

3

1u1 in S S

u2 not in S
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Warm Up: General Metrics

Theorem (Guha-Khuller’99)
Fix � > 0. Given input (-, (, :). It is NP-hard to distinguish:
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Johnson Coverage Hypothesis

universe

clients

sets

candidate centers

3

1u1 in S S

u2 not in S

Johnson Coverage Hypothesis (Cohen-Addad–K–Lee)
Fix � > 0. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most 1 − 1/4 + �
even when set system is induced subgraph of Johnson graph.

33



Johnson Coverage Hypothesis

universe

clients

sets

candidate centers

3

1u1 in S S

u2 not in S

Johnson Coverage Hypothesis (Cohen-Addad–K–Lee)
Fix � > 0. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most 1 − 1/4 + �
even when set system is induced subgraph of Johnson graph. 33



Johnson Coverage Hypothesis

(, C)-Johnson Coverage Problem
Given � ⊆

([=]
C

)
, and : as input, distinguish between:

Completeness: There exists C := {(1 , . . . , (:} ⊆
( [=]
C−1

)
such that

∀) ∈ �, ∃(8 ∈ C, (8 ⊂ ).

Soundness: For every C := {(1 , . . . , (:} ⊆
( [=]
C−1

)
we have

Pr
)∼�
[∃(8 , (8 ⊂ )] ≤ .

Johnson Coverage Hypothesis (Cohen-Addad–K–Lee)
∀� > 0, ∃C� ∈ ℕ such that (1 − 1

4 + �, C�)-Johnson Coverage
problem is NP-hard.
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Johnson Coverage Hypothesis: What can we show?

} C = 2: Vertex Coverage problem

◦ ≈0.9292 gap is tight!

} 3-Hypergraph Vertex Coverage problem is NP-Hard to
approximate to a factor of 7/8
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Proof Framework

3 ingredients

} JCH instance

} Dimensionality reduction for all ℓ?-metrics

◦ Works only for JCH instances

◦ Arises from transcript of a communication game

} Johnson Graph Embedding into ℓ?-metrics
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Our Results (Cohen-Addad–K’19,Cohen-Addad–K–Lee)

Discrete Version

:-means :-median :-means :-median
(JCH) (JCH) (UGC) (UGC)

ℓ1-metric 3.94 1.73 1.56 1.14

ℓ2-metric 1.73 1.27 1.17 1.06

ℓ∞-metric 3.94 1.73 3.94∗ 1.73∗

Continuous Version

:-means in ℓ2-metric ≈ 1.36 (JCH), 1.07 (UGC)
:-median in ℓ1-metric ≈ 1.36 (JCH), 1.07 (UGC)
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Continuous :-means and :-median

Theorem (Cohen-Addad–K–Lee’21)
Given input - ⊆ ℝ$(=), it is NP-hard to distinguish:

YES: There exists (�∗ , �∗) such that
∑
G∈-
‖(G − �∗(G)‖∞2 ≤ =′,

NO: For all (�, �)we have
∑
G∈-
‖(G − �(G)‖∞2 ≥ 4 · =′.

} :-median: 2 inapproximability

Continuous is harder than Discrete!

} Constant Bicriteria inapproximability

} Assuming UGC, hardness for : = 2!

} Dependency on 3, :, and ℓ∞ tight
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Minsum (Definition)

} (Γ,Δ) is a metric space

} Input: - ⊆ Γ, : ∈ ℕ

} Output: A partition - := -1 ¤∪-2 ¤∪ · · · ¤∪-: that minimizes:

∑
8∈[:]

∑
G,H∈-8

Δ(G, H)

} Approximation: $(log =) [Behsaz et al.’15]

} Hardness: 1 + � [Guruswami-Indyk’03]
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Minsum (Result)

Theorem (Cohen-Addad–K–Lee’21)
Given input (-, :), it is NP-hard to distinguish:

YES: There exists a partition - := -1 ¤∪-2 ¤∪ · · · ¤∪-: such that∑
8∈[:]

∑
G,H∈-8

Δ(G, H) ≤ =′,

NO: For every partition - := -1 ¤∪-2 ¤∪ · · · ¤∪-: we have∑
8∈[:]

∑
G,H∈-8

Δ(G, H) ≥ 1.41 · =′.

Key Ingredient: Hard Instances of Max-Coverage
with large girth
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Key Takeaways

Improved Inapproximability of

} :-means and :-median in ℓ?-metric using JCH framework

} Continuous versions of :-means and :-median in General
metric

} :-minsum in General metric
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