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Clustering: Applications

® Reveal internal structure of data

o Clustering gene expression

© Partition data

o Market segmentation

© Data Preparation

o Summarize news

© Data Exploration

o Underlying rules and Reoccurring patterns
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Clustering: Modeling

Discrete _
Coentnueus Version

© (I, A) is a metric space

© Input: XTI, keN and SCT

© Output: A classification (C, 0):
S

o CcXand |C|=k
og:X—>C

o ¢ is good



What is Good Classification?

© k-means, k-median, k-center, min-sum, correlation clustering . ..



What is Good Classification?

© k-means, k-median, k-center, min-sum, correlation clustering . ..

©® k-center value of (C, 0)

I?ea}g( A(x, o(x))



What is Good Classification?

© k-means, k-median, k-center, min-sum, correlation clustering . ..

©® k-center value of (C, 0)

I?ea}g( A(x, o(x))

©® k-median value of (C, o)

D Alx,a(x))

xeX



What is Good Classification?

© k-means, k-median, k-center, min-sum, correlation clustering . ..

©® k-center value of (C, 0)

I?ea}g( A(x, o(x))

©® k-median value of (C, o)

D Alx,a(x))

xeX

©® k-means value of (C, o)

D A, 0(x))?

xeX



What is Good Classification?

© k-means, k-median, k-center, min-sum, correlation clustering . ..

©® k-center value of (C, 0)

I?ea}g( A(x, o(x))

©® k-median value of (C, o)

D Alx,a(x))

xeX

©® k-means value of (C, o)

D A, 0(x))?

xeX

© Don't fit: Facility Location, Hierarchical Clustering ...
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Computational Question

Given (X, S, k) as input find a classification (C, ¢) that
minimizes the Clustering objective

Clustering Problem for objective A

Yes: There is classification (C*, 0*), such that A(X,0*) < f8
No: For all classification (C, 0), we have A(X, o) >



The Bitter Truth

NP-Hard



Salvaging Bitterness

Efficient Approximation



Truth cannot be Salvaged

NP-Hard to Approximate
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Hardness of Approximation

© Many important problems are not tractable
© Need to cope with the intractability

© Design algorithms that find solutions whose cost or value is
close to the optimum

© For some fundamental problems finding good approximate
solutions is as hard as finding optimal solutions

©® Area studying such results: Hardness of Approximation
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New Computational Question

Given (X, S, k) as input find a classification (C, ¢) that
approximately minimizes the Clustering objective

Clustering Problem for objective A

Yes: There is classification (C*, 0*), such that A(X, ") <
No: For all classification (C, 0), we have A(X,0) > (1+0) - f8
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k-center modeling

© Input: X,S CR% k e N
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k-center modeling

© Input: X,S CR% k e N

© Output: A classification (C, 0):

o CcCS and |C|=k
oc0:X—>C

o (C,0) minimizes maxyex [|x — o(x)ll,

13
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State-of-the-art: ¢,, Metrics

® {# and ¢, metrics

o Poly Time 3-approximation

o NP-Hard to approximate to 3 — o(1) factor! [FG88]
© Euclidean metric

o Poly Time 2.74-approximation! [N5513]

o NP-Hard to approximate to 2.65 factor [FG88]
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Proof Overview: General Metrics

Theorem (Karp’72)

It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is < 1

U

Theorem (Fowler-Paterson-Tanimoto’81)
Fix ¢ > 0. Given input (X, S, k). It is NP-hard to distinguish:
YES: There exists (C*, ¢*) such that m%(xA(x, d*(x)) <1

Xe

NO: For all (C, o) we have ma}g<A(x, ag(x)) >3
NE



Proof Overview: General Metrics

universe L
1 S
""" ~3 m sets
3
]
]
]
B  candidate centers
clients
]

18



Proof Overview: General Metrics

Theorem (Fowler-Paterson-Tanimoto’81)

Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists (C*, ¢*) such that m%g(A(x, o*(x)) <1
Xe

NO: For all (C, 0) we have mz%(xA(x, o(x)) >3
NE



k-means & k-median



k-means and k-median modeling

© Input: X,S C R keN
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k-means and k-median modeling

© Input: X,S C R keN

© Output: A classification (C, 0):

[e]

CcS and |C|=k
ocog:X—>C

[e]

k-means: (C, o) minimizes ), ||x — a(x)ll%

[}

k-median: (C, o) minimizes )’ cx [|x — o(x)]l,

21
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© General metric: k-means > 9
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(Ahmadian-Norouzi-Fard-Svensson-Ward’17)

© General metric: k-median > 2.6y
(Byrka—Pensyl-Rybicki-Srinivasan-Trinh"17)
© Euclidean metric k-means:

o Poly time approximation ~ 6.357
(Ahmadian—Norouzi-Fard-Svensson-Ward’17)

o Fixed Dimension: PTAS (Cohen-Addad’18)
o Fixed k: PTAS (Kumar-Sabharwal-Sen’10)
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Hardness of Approximation

Discrete Version:

© General metric: k-means = 3.94, k-median ~ 1.74
(Guha-Khuller'g9) 1.27
© {-metric: k-means < 1-9-1— k-median < =e4=—
(Trevisan’oo)
39 1.73
© {1 -metric: k-means < 04 k-median < =e4—
T
(Trevisan’oo) 3.4 173
©® le-metric: k-means < 1=84- k-median < #=e4=

(Guruswami-Indyk’o3)

Continuous Version:

.36
k-means in Euclidean metric < 1—%@1—3—
(Lee-Schmidt-Wright'17)
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Hardness of Approximation

Discrete Version:

© General metric: k-means = 3.94, k-median ~ 1.74
Guha-Khuller’
(Guha-Khuller'go) 1.73,1.17 1.27 1.06
© f-metric: k-means < =64+ k-median < +e4+—
(Trevisan’oo)
1.73,1.14
©® f-metric: k-means < 1-9-1— k medlan < o3
(Trevisan’oo)
3:94,3.94 1.73,1.73
©® le-metric: k-means < 1=84- k-median < #=e4=

(Guruswami-Indyk’o3)

Continuous Version:

.36 , 1.0
k-means in Euclidean metric < 1—%@1—3— 7
(Lee-Schmidt-Wright'17)
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Our Results (Cohen-Addad—-K’19,Cohen-Addad—K—Lee)

Discrete Version

k-means | k-median | k-means | k-median
(JCH) (JCH) (UGC) (UGC)
{1-metric 3.94 1.73 1.56 1.14
{r-metric 1.73 1.27 1.17 1.06
{e-metric 3.94 1.73 3.94" 1.73"
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{r-metric 1.73 1.27 1.17 1.06
{e-metric 3.94 1.73 3.94" 1.73"
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k-means in £-metric ~ 1.36 (JCH), 1.07 (UGC)
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Our Results (Cohen-Addad—-K’19,Cohen-Addad—K—Lee)

Discrete Version

k-means

k-median | k-means | k-median
(JCH) (JCH) (UGC) (UGC)
{1-metric 3.94 1.73 1.56 1.14
{r-metric 1.73 1.27 1.17 1.06
{e-metric 3.94 1.73 3.94" 1.73"

Continuous Version

k-means in £-metric ~ 1.36 (JCH), 1.07 (UGC)
k-median in {;-metric ~ 1.36 (JCH), 1.07 (UGC)

A New Embedding Framework to potentially
get Strong (tight?) Inapproximability results!
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NO: Max Coverage is at most 1 —1/e + ¢

U
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Proof Overview: General Metrics

Theorem (Feige’98)

Fix ¢ > 0. It is NP-hard to distinguish:
YES: Max Coverage is 1

NO: Max Coverage is at most 1 —1/e + ¢

U

Theorem (Guha-Khuller'99)
Fix ¢ > 0. Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists (C*, ¢*) such that 3. A(x, 0*(x))? < |X]|
xeX
NO: For all (C, 6) we have Y A(x, 0(x))?> > (1 +8/e — &) - |X]
xeX
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universe .
costis 1

_---r—l |

/

/ .
+scostis 3 _ ..
’ -

sets

- candidate centers
points to cover
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Warm Up: General Metrics

Theorem (Guha-Khuller'99)
Fix € > 0. Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists (C*, 0*) such that Y A(x, 0*(x))? < |X]|
xeX
NO: For all (C, 6) we have Y A(x, 0(x))?> > (1 +8/e — &) - |X]
xeX

32



Johnson Coverage Hypothesis

universe S.
------ — u sets
3
-]
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]

-] candidate centers
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33



Johnson Coverage Hypothesis

universe

-] candidate centers

clients

Johnson Coverage Hypothesis (Cohen-Addad—K-Lee)
Fix ¢ > 0. It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is at most 1 — 1/e + ¢

even when set system is induced subgraph of Johnson graph. 3



Johnson Coverage Hypothesis

(a, t)-Johnson Coverage Problem

Given E C ([?]), and k as input, distinguish between:

Completeness: There exists 6 := {Sy,..., Sk} C (t[ﬂ) such that
VI €eE, 35, €6, S; CcT.
Soundness: For every 6 :={Sy,...,Sk} C (t[f]l) we have

Pr[3S;, S;cT] < a.
T~E
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Johnson Coverage Hypothesis
(a, t)-Johnson Coverage Problem

Given E C ([?]), and k as input, distinguish between:

Completeness: There exists 6 := {Sy,..., Sk} C (t[ﬂ) such that
VI €¢E, 3S; €6, S; CT.

Soundness: For every 6 :={Sy,...,Sk} C (t[f]l) we have

Pr[3S;, S;cT] < a.
T~E

Johnson Coverage Hypothesis (Cohen-Addad—K-Lee)

Ve > 0, dt, € N such that (1 — % + ¢, t¢)-Johnson Coverage

problem is NP-hard. »



Johnson Coverage Hypothesis: What can we show?

© t = 2: Vertex Coverage problem
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Johnson Coverage Hypothesis: What can we show?

© t = 2: Vertex Coverage problem
o ~0.9292 gap is tight!

© 3-Hypergraph Vertex Coverage problem is NP-Hard to
approximate to a factor of 7/8
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Proof Framework

3 ingredients

© JCH instance

© Dimensionality reduction for all £,-metrics

o Works only for JCH instances

o Arises from transcript of a communication game

© Johnson Graph Embedding into {,-metrics
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Our Results (Cohen-Addad—-K’19,Cohen-Addad—K—Lee)

Discrete Version

k-means | k-median | k-means | k-median
(JCH) (JCH) (UGQO) (UGO)
{1-metric 3.94 1.73 1.56 1.14
{r-metric 1.73 1.27 1.17 1.06
{eo-metric 3.94 1.73 3.94" 1.73"
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Given input X € RO™ it is NP-hard to distinguish:

YES: There exists (C*, 6*) such that 3 [|(x = 0*(%)||e? < 1,
xeX

NO: For all (C, o) we have Y ||(x = 0(%)||e0? > 4 - 1".
xeX

© k-median: 2 inapproximability
Continuous is harder than Discrete!
© Constant Bicriteria inapproximability

© Assuming UGC, hardness for k = 2!

© Dependency on d, k, and . tight .
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® Output: A partition X := X;UX,U - - - UX) that minimizes:

D, 2. Ay

ie[k] x,yeX;

© Approximation: O(logn) [Behsaz et al.'15]

© Hardness: 1 + ¢ [Guruswami-Indyk’o3]
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NO: For every partition X := X; UX,oU - - - UX} we have
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i€[k] x,yeX;

Key Ingredient: Hard Instances of Max-Coverage

with large girth
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