# Hardness of Approximation for Metric Clustering

Karthik C. S.

(Rutgers University)

March 4<sup>th</sup> 2022



# Classifying Handwritten Digits

```
1566836894
2202856S51
63880154/5
21980336# \
7914992481
3739367243
3519744349
0160528887
5672970289
0471266010
```

# Classifying Handwritten Digits

63880154/5 1980336#1 *5*1974**93**49 



 $28 \times 28$  grayscale image

# Clustering: Abstraction



# Clustering: Abstraction



# Clustering: Abstraction



Task of Classifying Input Data

- Reveal internal structure of data
  - Clustering gene expression

- Reveal internal structure of data
  - Clustering gene expression
- Partition data
  - Market segmentation

- Reveal internal structure of data
  - Clustering gene expression
- Partition data
  - Market segmentation
- Data Preparation
  - Summarize news

- Reveal internal structure of data
  - Clustering gene expression
- Partition data
  - Market segmentation
- O Data Preparation
  - Summarize news
- Data Exploration
  - Underlying rules and Reoccurring patterns

 $\odot$   $(\Gamma, \Delta)$  is a metric space

- $\odot$  ( $\Gamma$ ,  $\Delta$ ) is a metric space
- ○Input: X ⊆ Γ, k ∈ ℕ

- $\odot$  ( $\Gamma$ ,  $\Delta$ ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- $\odot$  Output: A classification (C,  $\sigma$ ):

- $\odot$  ( $\Gamma$ ,  $\Delta$ ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- $\odot$  Output: A classification (C,  $\sigma$ ):
  - $\circ$  *C* ⊆ Γ and |C| = k

- $\odot$  ( $\Gamma$ ,  $\Delta$ ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- ⊚ Output: A classification (C,  $\sigma$ ):
  - $\circ$  *C* ⊆ Γ and |C| = k
  - $\circ \sigma: X \to C$

- $\odot$  ( $\Gamma$ ,  $\Delta$ ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- ⊚ Output: A classification (C,  $\sigma$ ):
  - $\circ$  *C* ⊆ Γ and |C| = k
  - $\circ \ \sigma: X \to C$
  - $\circ$   $\sigma$  is good

#### **Continuous Version**

- $\odot$  ( $\Gamma$ ,  $\Delta$ ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- ⊚ Output: A classification (C,  $\sigma$ ):
  - $\circ$  *C* ⊆ Γ and |C| = k
  - $\circ \ \sigma: X \to C$
  - $\circ$   $\sigma$  is good

# Discrete Continuous Version

- $\odot$  ( $\Gamma$ ,  $\Delta$ ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- ⊚ Output: A classification (C,  $\sigma$ ):
  - $\circ$  *C* ⊆ Γ and |C| = k
  - $\circ \ \sigma: X \to C$
  - $\circ$   $\sigma$  is good

# Discrete Continuous Version

- $\odot$  ( $\Gamma$ ,  $\Delta$ ) is a metric space
- ⊚ Input:  $X \subseteq \Gamma$ ,  $k \in \mathbb{N}$  and  $S \subseteq \Gamma$
- $\bigcirc$  Output: A classification (C,  $\sigma$ ):
  - $\circ$   $C \subseteq X$  and |C| = k
  - $\circ \ \sigma: X \to C$
  - $\circ$   $\sigma$  is good

⊚ *k*-means, *k*-median, *k*-center, min-sum, correlation clustering . . .

- ⊚ *k*-means, *k*-median, *k*-center, min-sum, correlation clustering . . .
- $\odot$  *k*-center value of (C,  $\sigma$ )

$$\max_{x \in X} \Delta(x, \sigma(x))$$

- ⊚ *k*-means, *k*-median, *k*-center, min-sum, correlation clustering . . .
- $\odot$  *k*-center value of (C,  $\sigma$ )

$$\max_{x \in X} \Delta(x, \sigma(x))$$

 $\odot$  *k*-median value of (C,  $\sigma$ )

$$\sum_{x \in X} \Delta(x, \sigma(x))$$

- ⊚ *k*-means, *k*-median, *k*-center, min-sum, correlation clustering . . .
- $\odot$  *k*-center value of (C,  $\sigma$ )

$$\max_{x \in X} \Delta(x, \sigma(x))$$

 $\odot$  *k*-median value of  $(C, \sigma)$ 

$$\sum_{x \in X} \Delta(x, \sigma(x))$$

 $\odot$  *k*-means value of (C,  $\sigma$ )

$$\sum_{x \in Y} \Delta(x, \sigma(x))^{2}$$

- ⊚ *k*-means, *k*-median, *k*-center, min-sum, correlation clustering . . .
- $\odot$  *k*-center value of (C,  $\sigma$ )

$$\max_{x \in X} \Delta(x, \sigma(x))$$

 $\odot$  *k*-median value of  $(C, \sigma)$ 

$$\sum_{x \in X} \Delta(x, \sigma(x))$$

 $\odot$  *k*-means value of (C,  $\sigma$ )

$$\sum_{x \in X} \Delta(x, \sigma(x))^{2}$$

On't fit: Facility Location, Hierarchical Clustering . . .

Given (X, S, k) as input find a classification  $(C, \sigma)$  that minimizes the Clustering objective

Given (X, S, k) as input find a classification  $(C, \sigma)$  that minimizes the Clustering objective

Clustering Problem for objective  $\Lambda$ 

Given (X, S, k) as input find a classification  $(C, \sigma)$  that minimizes the Clustering objective

#### Clustering Problem for objective $\Lambda$

Yes: There is classification  $(C^*, \sigma^*)$ , such that  $\Lambda(X, \sigma^*) \leq \beta$ 

Given (X, S, k) as input find a classification  $(C, \sigma)$  that minimizes the Clustering objective

#### Clustering Problem for objective $\Lambda$

Yes: There is classification  $(C^*, \sigma^*)$ , such that  $\Lambda(X, \sigma^*) \leq \beta$ 

No: For all classification  $(C, \sigma)$ , we have  $\Lambda(X, \sigma) > \beta$ 

#### The Bitter Truth



NP-Hard

# Salvaging Bitterness



**Efficient Approximation** 

# Truth cannot be Salvaged



NP-Hard to Approximate

Many important problems are not tractable

- Many important problems are not tractable
- Need to cope with the intractability

- Many important problems are not tractable
- Need to cope with the intractability
- Design algorithms that find solutions whose cost or value is close to the optimum

- Many important problems are not tractable
- Need to cope with the intractability
- Design algorithms that find solutions whose cost or value is close to the optimum
- For some fundamental problems finding good approximate solutions is as hard as finding optimal solutions

- Many important problems are not tractable
- Need to cope with the intractability
- Design algorithms that find solutions whose cost or value is close to the optimum
- For some fundamental problems finding good approximate solutions is as hard as finding optimal solutions
- Area studying such results: Hardness of Approximation

Given (X, S, k) as input find a classification  $(C, \sigma)$  that approximately minimizes the Clustering objective

Given (X, S, k) as input find a classification  $(C, \sigma)$  that approximately minimizes the Clustering objective

Clustering Problem for objective  $\Lambda$ 

Given (X, S, k) as input find a classification  $(C, \sigma)$  that approximately minimizes the Clustering objective

#### Clustering Problem for objective $\Lambda$

Yes: There is classification  $(C^*, \sigma^*)$ , such that  $\Lambda(X, \sigma^*) \leq \beta$ 

Given (X, S, k) as input find a classification  $(C, \sigma)$  that approximately minimizes the Clustering objective

#### Clustering Problem for objective $\Lambda$

Yes: There is classification  $(C^*, \sigma^*)$ , such that  $\Lambda(X, \sigma^*) \leq \beta$ 

No: For all classification  $(C, \sigma)$ , we have  $\Lambda(X, \sigma) > (1 + \delta) \cdot \beta$ 

# *k*-center

# *k*-center modeling

⊚ Input:  $X, S \subseteq \mathbb{R}^d, k \in \mathbb{N}$ 

# k-center modeling

- ⊚ Input:  $X, S \subseteq \mathbb{R}^d$ ,  $k \in \mathbb{N}$
- ⊚ Output: A classification (C,  $\sigma$ ):
  - $\circ$   $C \subseteq S$  and |C| = k
  - $\circ \sigma: X \to C$
  - $(C, \sigma)$  minimizes  $\max_{x \in X} ||x \sigma(x)||_p$

## State-of-the-art: General Metrics

NP-hard [FPT81]

#### State-of-the-art: General Metrics

- NP-hard [FPT81]
- Poly Time 3-approximation (Gonzalez Algorithm)

#### State-of-the-art: General Metrics

- NP-hard [FPT81]
- Poly Time 3-approximation (Gonzalez Algorithm)
- ⊚ NP-Hard to approximate to 3 o(1) factor! [FPT81]

# State-of-the-art: $\ell_p$ Metrics

- $\odot$   $\ell_1$  and  $\ell_\infty$  metrics
  - Poly Time 3-approximation

# State-of-the-art: $\ell_p$ Metrics

- $\circ$   $\ell_1$  and  $\ell_\infty$  metrics
  - Poly Time 3-approximation
  - NP-Hard to approximate to 3 o(1) factor! [FG88]
- Euclidean metric
  - Poly Time 2.74-approximation! [NSS<sub>13</sub>]

# State-of-the-art: $\ell_p$ Metrics

- $\circ$   $\ell_1$  and  $\ell_\infty$  metrics
  - Poly Time 3-approximation
  - NP-Hard to approximate to 3 o(1) factor! [FG88]
- Euclidean metric
  - Poly Time 2.74-approximation! [NSS13]
  - NP-Hard to approximate to 2.65 factor [FG88]

#### Max Coverage:

 $\odot$  Input: Universe and Collection of Subsets (U, 8, k)

#### Max Coverage:

- $\odot$  Input: Universe and Collection of Subsets  $(U, \delta, k)$
- ⊙ Objective: Max Fraction of *U* covered by *k* subsets in 8

#### Max Coverage:

- $\odot$  Input: Universe and Collection of Subsets  $(U, \delta, k)$
- ⊚ Objective: Max Fraction of *U* covered by *k* subsets in *S*

#### Theorem (Karp'72)

It is NP-hard to distinguish:

#### Max Coverage:

- $\odot$  Input: Universe and Collection of Subsets (U,  $\delta$ , k)
- ⊚ Objective: Max Fraction of *U* covered by *k* subsets in *⊗*

#### Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Max Coverage is 1

#### Max Coverage:

- $\odot$  Input: Universe and Collection of Subsets  $(U, \delta, k)$
- ⊚ Objective: Max Fraction of *U* covered by *k* subsets in *⊗*

#### Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is < 1

# Theorem (Karp'72)

It is NP-hard to distinguish:

# Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Max Coverage is 1

## Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is < 1



#### Theorem (Karp'72)

It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is < 1



#### Theorem (Fowler-Paterson-Tanimoto'81)

Fix  $\varepsilon > 0$ . Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists  $(C^*, \sigma^*)$  such that  $\max_{x \in X} \Delta(x, \sigma^*(x)) \le 1$ 

NO: For all  $(C, \sigma)$  we have  $\max_{x \in X} \Delta(x, \sigma(x)) \ge 3$ 



#### Theorem (Fowler-Paterson-Tanimoto'81)

Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists  $(C^*, \sigma^*)$  such that  $\max_{x \in X} \Delta(x, \sigma^*(x)) \le 1$ 

NO: For all  $(C, \sigma)$  we have  $\max_{x \in X} \Delta(x, \sigma(x)) \ge 3$ 

*k*-means & *k*-median

# k-means and k-median modeling

 $\odot \underline{\text{Input: } X, S \subseteq \mathbb{R}^d, k \in \mathbb{N}$ 

# k-means and k-median modeling

- ⊚ Input:  $X, S \subseteq \mathbb{R}^d$ ,  $k \in \mathbb{N}$
- ⊚ Output: A classification (C,  $\sigma$ ):
  - $\circ$   $C \subseteq S$  and |C| = k
  - $\circ \sigma: X \to C$
  - *k*-means:  $(C, \sigma)$  minimizes  $\sum_{x \in X} ||x \sigma(x)||_{\mathbf{p}}^2$
  - *k*-median:  $(C, \sigma)$  minimizes  $\sum_{x \in X} ||x \sigma(x)||_p$

# **Exact Computation**

 $\odot$  NP-hard when k = 2 (Dasgupta'07)

# **Exact Computation**

- $\odot$  NP-hard when k = 2 (Dasgupta'07)
- NP-hard in Euclidean plane
   (Megiddo–Supowit'84,
   Mahajan–Nimbhorkar–Varadarajan'12)

# **Exact Computation**

- $\odot$  NP-hard when k = 2 (Dasgupta'07)
- NP-hard in Euclidean plane
   (Megiddo–Supowit'84,
   Mahajan–Nimbhorkar–Varadarajan'12)
- ⊚ W[2]-hard in general metric (Guha-Khuller'99)

⊚ General metric: k-means ≥ 9(Ahmadian–Norouzi-Fard–Svensson–Ward'17)

- ⊚ General metric: k-means ≥ 9(Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ⊚ General metric: k-median ≥ 2.67(Byrka–Pensyl–Rybicki–Srinivasan–Trinh'17)

- ⊚ General metric: k-means ≥ 9(Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ⊚ General metric: k-median ≥ 2.67(Byrka–Pensyl–Rybicki–Srinivasan–Trinh'17)
- © Euclidean metric *k*-means:

- ⊚ General metric: k-means ≥ 9(Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ⊚ General metric: k-median ≥ 2.67
   (Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)
- © Euclidean metric k-means:
  - Poly time approximation ≈ 6.357
     (Ahmadian–Norouzi-Fard–Svensson–Ward'17)

- ⊚ General metric: k-means ≥ 9(Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ⊚ General metric: k-median ≥ 2.67(Byrka–Pensyl–Rybicki–Srinivasan–Trinh'17)
- © Euclidean metric k-means:
  - Poly time approximation ≈ 6.357
     (Ahmadian–Norouzi-Fard–Svensson–Ward'17)
  - Fixed Dimension: PTAS (Cohen-Addad'18)

- ⊚ General metric: k-means ≥ 9(Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ⊚ General metric: k-median ≥ 2.67
   (Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)
- © Euclidean metric *k*-means:
  - Poly time approximation ≈ 6.357
     (Ahmadian–Norouzi-Fard–Svensson–Ward'17)
  - Fixed Dimension: PTAS (Cohen-Addad'18)
  - Fixed *k*: PTAS (Kumar–Sabharwal–Sen′10)

Discrete Version:

## Discrete Version:

⊚ General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)

#### Discrete Version:

- ⊚ General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)
- ⊚  $\ell_2$ -metric: k-means  $\ll$  1.01, k-median  $\ll$  1.01 (Trevisan'00)
- ⊚  $\ell_1$ -metric: k-means  $\ll$  1.01, k-median  $\ll$  1.01 (Trevisan'00)

#### Discrete Version:

- ⊚ General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)
- ⊚  $\ell_2$ -metric: k-means  $\ll$  1.01, k-median  $\ll$  1.01 (Trevisan'00)
- ⊚  $\ell_1$ -metric: k-means  $\ll$  1.01, k-median  $\ll$  1.01 (Trevisan'00)
- ⊚  $\ell_{\infty}$ -metric: k-means  $\ll$  1.01, k-median  $\ll$  1.01 (Guruswami-Indyk'03)

#### Discrete Version:

- ⊚ General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)
- ⊚  $\ell_2$ -metric: k-means ≪ 1.01, k-median ≪ 1.01 (Trevisan'00)
- ⊚  $\ell_1$ -metric: k-means  $\ll$  1.01, k-median  $\ll$  1.01 (Trevisan'00)
- ⊚  $\ell_{\infty}$ -metric: k-means  $\ll$  1.01, k-median  $\ll$  1.01 (Guruswami-Indyk'03)

#### **Continuous Version:**

k-means in Euclidean metric < 1.0013 (Lee-Schmidt-Wright'17)

#### Discrete Version:

```
⊚ General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)

⑤ \ell_2-metric: k-means ≪ 1.01, k-median ≪ 1.01 (Trevisan'00)

⑤ \ell_1-metric: k-means ≪ 1.01, k-median ≪ 1.01 (Trevisan'00)

⑥ \ell_\infty-metric: k-means ≪ 1.01, k-median ≪ 1.73 (Guruswami-Indyk'03)
```

## Continuous Version:

```
k-means in Euclidean metric < \frac{1.36}{1.0013} (Lee-Schmidt-Wright'17)
```

#### Discrete Version:

```
© General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)

© \ell_2-metric: k-means ≪ 1.01, k-median ≪ 1.27, 1.06 (Trevisan'00)

© \ell_1-metric: k-means ≪ 1.01, k-median ≪ 1.01 (Trevisan'00)

© \ell_2-metric: k-means ≪ 1.01, k-median ≪ 1.01 (Trevisan'00)

© \ell_\infty-metric: k-means ≪ 1.01, k-median ≪ 1.73, 1.73 (Guruswami-Indyk'03)
```

#### Continuous Version:

```
k-means in Euclidean metric < \frac{1.36}{1.0013} (Lee-Schmidt-Wright'17)
```

#### Discrete Version

|                       | k-means<br>(JCH) | k-median<br>(JCH) | k-means<br>(UGC) | k-median<br>(UGC) |
|-----------------------|------------------|-------------------|------------------|-------------------|
| $\ell_1$ -metric      | 3.94             | 1.73              | 1.56             | 1.14              |
| $\ell_2$ -metric      | 1.73             | 1.27              | 1.17             | 1.06              |
| $\ell_\infty$ -metric | 3.94             | 1.73              | 3.94*            | 1.73*             |

#### Discrete Version

|                       | k-means<br>(JCH) | k-median<br>(JCH) | k-means<br>(UGC) | k-median<br>(UGC) |
|-----------------------|------------------|-------------------|------------------|-------------------|
| $\ell_1$ -metric      | 3.94             | 1.73              | 1.56             | 1.14              |
| $\ell_2$ -metric      | 1.73             | 1.27              | 1.17             | 1.06              |
| $\ell_\infty$ -metric | 3.94             | 1.73              | 3.94*            | 1.73*             |

#### Continuous Version

*k*-means in  $\ell_2$ -metric ≈ 1.36 (JCH), 1.07 (UGC) *k*-median in  $\ell_1$ -metric ≈ 1.36 (JCH), 1.07 (UGC)

#### Discrete Version

|                       | k-means<br>(JCH) | k-median<br>(JCH) | k-means<br>(UGC) | k-median<br>(UGC) |
|-----------------------|------------------|-------------------|------------------|-------------------|
| $\ell_1$ -metric      | 3.94             | 1.73              | 1.56             | 1.14              |
| $\ell_2$ -metric      | 1.73             | 1.27              | 1.17             | 1.06              |
| $\ell_\infty$ -metric | 3.94             | 1.73              | 3.94*            | 1.73*             |

#### Continuous Version

k-means in  $\ell_2$ -metric ≈ 1.36 (JCH), 1.07 (UGC) k-median in  $\ell_1$ -metric ≈ 1.36 (JCH), 1.07 (UGC)

A New Embedding Framework to potentially get Strong (tight?) Inapproximability results!

## Theorem (Guha-Khuller'99)

Fix  $\varepsilon > 0$ . Given input (X, S, k). It is NP-hard to distinguish:

#### Theorem (Guha-Khuller'99)

Fix  $\varepsilon > 0$ . Given input (X, S, k). It is NP-hard to distinguish:

**YES:** There exists  $(C^*, \sigma^*)$  such that  $\sum_{x \in X} \Delta(x, \sigma^*(x))^2 \leq |X|$ 

#### Theorem (Guha-Khuller'99)

Fix  $\varepsilon > 0$ . Given input (X, S, k). It is NP-hard to distinguish:

**YES**: There exists 
$$(C^*, \sigma^*)$$
 such that  $\sum_{x \in X} \Delta(x, \sigma^*(x))^2 \le |X|$ 

**NO**: For all 
$$(C, \sigma)$$
 we have  $\sum_{x \in X} \Delta(x, \sigma(x))^2 \ge (1 + 8/e - \varepsilon) \cdot |X|$ 

#### Max Coverage:

 $\odot$  Input: Universe and Collection of Subsets (U, 8, k)

#### Max Coverage:

- $\odot$  Input: Universe and Collection of Subsets  $(U, \delta, k)$
- ⊚ Objective: Max Fraction of *U* covered by *k* subsets in *⊗*

#### Max Coverage:

- $\odot$  Input: Universe and Collection of Subsets  $(U, \delta, k)$
- ⊚ Objective: Max Fraction of *U* covered by *k* subsets in *⊗*

## Theorem (Feige'98)

Fix  $\varepsilon > 0$ . It is NP-hard to distinguish:

#### Max Coverage:

- $\odot$  Input: Universe and Collection of Subsets  $(U, \delta, k)$
- ⊚ Objective: Max Fraction of *U* covered by *k* subsets in *⊗*

## Theorem (Feige'98)

Fix  $\varepsilon > 0$ . It is NP-hard to distinguish:

YES: Max Coverage is 1

#### Max Coverage:

- $\odot$  Input: Universe and Collection of Subsets  $(U, \delta, k)$
- ⊙ Objective: Max Fraction of *U* covered by *k* subsets in *S*

## Theorem (Feige'98)

Fix  $\varepsilon > 0$ . It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is at most  $1 - 1/e + \varepsilon$ 

#### Theorem (Feige'98)

Fix  $\varepsilon > 0$ . It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is at most  $1 - 1/e + \varepsilon$ 



#### Theorem (Feige'98)

Fix  $\varepsilon > 0$ . It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is at most  $1 - 1/e + \varepsilon$ 



#### Theorem (Guha-Khuller'99)

Fix  $\varepsilon > 0$ . Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists  $(C^*, \sigma^*)$  such that  $\sum_{x \in X} \Delta(x, \sigma^*(x))^2 \le |X|$ 

**NO**: For all  $(C, \sigma)$  we have  $\sum_{x \in X} \Delta(x, \sigma(x))^2 \ge (1 + 8/e - \varepsilon) \cdot |X|$ 







#### Theorem (Guha-Khuller'99)

Fix  $\varepsilon > 0$ . Given input (X, S, k). It is NP-hard to distinguish:

**YES**: There exists 
$$(C^*, \sigma^*)$$
 such that  $\sum_{x \in X} \Delta(x, \sigma^*(x))^2 \le |X|$ 

**NO**: For all 
$$(C, \sigma)$$
 we have  $\sum_{x \in X} \Delta(x, \sigma(x))^2 \ge (1 + 8/e - \varepsilon) \cdot |X|$ 





## Johnson Coverage Hypothesis (Cohen-Addad–K–Lee)

Fix  $\varepsilon > 0$ . It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is at most  $1 - 1/e + \varepsilon$ 

even when set system is induced subgraph of Johnson graph.

#### $(\alpha, t)$ -Johnson Coverage Problem

Given  $E \subseteq \binom{[n]}{t}$ , and k as input, distinguish between:

**Completeness**: There exists  $\mathscr{C} := \{S_1, \dots, S_k\} \subseteq \binom{[n]}{t-1}$  such that

$$\forall T \in E, \exists S_i \in \mathcal{C}, S_i \subset T.$$

**Soundness**: For every  $\mathscr{C} := \{S_1, \ldots, S_k\} \subseteq \binom{[n]}{t-1}$  we have

$$\Pr_{T\sim E}[\exists S_i,\ S_i\subset T]\leq \alpha.$$

#### $(\alpha, t)$ -Johnson Coverage Problem

Given  $E \subseteq \binom{[n]}{t}$ , and k as input, distinguish between:

**Completeness**: There exists  $\mathscr{C} := \{S_1, \dots, S_k\} \subseteq {n \choose t-1}$  such that

$$\forall T \in E, \ \exists S_i \in \mathcal{C}, \ S_i \subset T.$$

**Soundness**: For every  $\mathscr{C} := \{S_1, \ldots, S_k\} \subseteq \binom{[n]}{t-1}$  we have

$$\Pr_{T\sim E}[\exists S_i,\ S_i\subset T]\leq \alpha.$$

## Johnson Coverage Hypothesis (Cohen-Addad–K–Lee)

 $\forall \varepsilon > 0, \exists t_{\varepsilon} \in \mathbb{N} \text{ such that } (1 - \frac{1}{e} + \varepsilon, t_{\varepsilon})\text{-Johnson Coverage problem is NP-hard.}$ 

# Johnson Coverage Hypothesis: What can we show?

 $\odot$  t = 2: Vertex Coverage problem

# Johnson Coverage Hypothesis: What can we show?

- $\odot$  *t* = 2: Vertex Coverage problem
  - o ≈0.9292 gap is tight!

## Johnson Coverage Hypothesis: What can we show?

- t = 2: Vertex Coverage problem ≈0.9292 gap is tight!
- 3-Hypergraph Vertex Coverage problem is NP-Hard to approximate to a factor of 7/8

3 ingredients

## 3 ingredients

O JCH instance

## 3 ingredients

- O ICH instance
- © Dimensionality reduction for all  $\ell_p$ -metrics
  - Works only for JCH instances
  - Arises from transcript of a communication game

## 3 ingredients

- O JCH instance
- © Dimensionality reduction for all  $\ell_p$ -metrics
  - Works only for JCH instances
  - Arises from transcript of a communication game
- ⊚ Johnson Graph Embedding into  $\ell_p$ -metrics

#### Discrete Version

|                       | k-means<br>(JCH) | k-median<br>(JCH) | k-means<br>(UGC) | k-median<br>(UGC) |
|-----------------------|------------------|-------------------|------------------|-------------------|
| $\ell_1$ -metric      | 3.94             | 1.73              | 1.56             | 1.14              |
| $\ell_2$ -metric      | 1.73             | 1.27              | 1.17             | 1.06              |
| $\ell_\infty$ -metric | 3.94             | 1.73              | 3.94*            | 1.73*             |

### Our Results (Cohen-Addad–K'19,Cohen-Addad–K–Lee)

#### Discrete Version

|                       | k-means<br>(JCH) | k-median<br>(JCH) | k-means<br>(UGC) | k-median<br>(UGC) |
|-----------------------|------------------|-------------------|------------------|-------------------|
| $\ell_1$ -metric      | 3.94             | 1.73              | 1.56             | 1.14              |
| $\ell_2$ -metric      | 1.73             | 1.27              | 1.17             | 1.06              |
| $\ell_\infty$ -metric | 3.94             | 1.73              | 3.94*            | 1.73*             |

#### Continuous Version

*k*-means in  $\ell_2$ -metric ≈ 1.36 (JCH), 1.07 (UGC) *k*-median in  $\ell_1$ -metric ≈ 1.36 (JCH), 1.07 (UGC)

### Our Results (Cohen-Addad–K'19,Cohen-Addad–K–Lee)

#### Discrete Version

|                       | k-means<br>(JCH) | k-median<br>(JCH) | k-means<br>(UGC) | k-median<br>(UGC) |
|-----------------------|------------------|-------------------|------------------|-------------------|
| $\ell_1$ -metric      | 3.94             | 1.73              | 1.56             | 1.14              |
| $\ell_2$ -metric      | 1.73             | 1.27              | 1.17             | 1.06              |
| $\ell_\infty$ -metric | 3.94             | 1.73              | 3.94*            | 1.73*             |

#### Continuous Version

*k*-means in  $\ell_2$ -metric ≈ 1.36 (JCH), 1.07 (UGC) *k*-median in  $\ell_1$ -metric ≈ 1.36 (JCH), 1.07 (UGC)

### Theorem (Cohen-Addad-K-Lee'21)

Given input  $X \subseteq \mathbb{R}^{O(n)}$ , it is NP-hard to distinguish:

#### Theorem (Cohen-Addad–K–Lee'21)

Given input  $X \subseteq \mathbb{R}^{O(n)}$ , it is NP-hard to distinguish:

YES: There exists  $(C^*, \sigma^*)$  such that  $\sum_{x \in X} ||(x - \sigma^*(x))||_{\infty}^2 \le n'$ ,

NO: For all  $(C, \sigma)$  we have  $\sum_{x \in X} ||(x - \sigma(x))||_{\infty}^2 \ge 4 \cdot n'$ .

### Theorem (Cohen-Addad–K–Lee'21)

Given input  $X \subseteq \mathbb{R}^{O(n)}$ , it is NP-hard to distinguish:

YES: There exists  $(C^*, \sigma^*)$  such that  $\sum_{x \in X} ||(x - \sigma^*(x))||_{\infty}^2 \le n'$ ,

NO: For all  $(C, \sigma)$  we have  $\sum_{x \in X} ||(x - \sigma(x))||_{\infty}^2 \ge 4 \cdot n'$ .

⊚ *k*-median: 2 inapproximability

#### Theorem (Cohen-Addad–K–Lee'21)

Given input  $X \subseteq \mathbb{R}^{O(n)}$ , it is NP-hard to distinguish:

YES: There exists  $(C^*, \sigma^*)$  such that  $\sum_{x \in X} \|(x - \sigma^*(x))\|_{\infty}^2 \le n'$ ,

NO: For all  $(C, \sigma)$  we have  $\sum_{x \in X} ||(x - \sigma(x))||_{\infty}^2 \ge 4 \cdot n'$ .

⊚ *k*-median: 2 inapproximability

Continuous is harder than Discrete!

#### Theorem (Cohen-Addad–K–Lee'21)

Given input  $X \subseteq \mathbb{R}^{O(n)}$ , it is NP-hard to distinguish:

YES: There exists  $(C^*, \sigma^*)$  such that  $\sum_{x \in X} \|(x - \sigma^*(x))\|_{\infty}^2 \le n'$ ,

NO: For all  $(C, \sigma)$  we have  $\sum_{x \in X} ||(x - \sigma(x))||_{\infty}^2 \ge 4 \cdot n'$ .

⊚ *k*-median: 2 inapproximability

#### Continuous is harder than Discrete!

Constant Bicriteria inapproximability

#### Theorem (Cohen-Addad–K–Lee'21)

Given input  $X \subseteq \mathbb{R}^{O(n)}$ , it is NP-hard to distinguish:

YES: There exists  $(C^*, \sigma^*)$  such that  $\sum_{x \in X} \|(x - \sigma^*(x))\|_{\infty}^2 \le n'$ ,

NO: For all  $(C, \sigma)$  we have  $\sum_{x \in X} ||(x - \sigma(x))||_{\infty}^2 \ge 4 \cdot n'$ .

⊚ *k*-median: 2 inapproximability

#### Continuous is harder than Discrete!

- © Constant Bicriteria inapproximability
- $\odot$  Assuming UGC, hardness for k = 2!

#### Theorem (Cohen-Addad–K–Lee'21)

Given input  $X \subseteq \mathbb{R}^{O(n)}$ , it is NP-hard to distinguish:

YES: There exists  $(C^*, \sigma^*)$  such that  $\sum_{x \in X} ||(x - \sigma^*(x))||_{\infty}^2 \le n'$ ,

NO: For all  $(C, \sigma)$  we have  $\sum_{x \in X} ||(x - \sigma(x))||_{\infty}^2 \ge 4 \cdot n'$ .

⊚ *k*-median: 2 inapproximability

#### Continuous is harder than Discrete!

- Constant Bicriteria inapproximability
- ⊚ Assuming UGC, hardness for k = 2!
- ⊚ Dependency on d, k, and  $\ell_{\infty}$  tight

- $\odot$  ( $\Gamma$ ,  $\Delta$ ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ

- $\odot$   $(\Gamma, \Delta)$  is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- $\odot$  Output: A partition  $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$  that minimizes:

- $\odot$  ( $\Gamma$ ,  $\Delta$ ) is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- $\odot$  Output: A partition  $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$  that minimizes:

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y)$$

- $\odot$   $(\Gamma, \Delta)$  is a metric space
- Input: X ⊆ Γ, k ∈ ℕ
- $\odot$  Output: A partition  $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$  that minimizes:

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y)$$

 $\odot$  Approximation:  $O(\log n)$  [Behsaz et al.'15]

- $\odot$  ( $\Gamma$ ,  $\Delta$ ) is a metric space
- ⊚ Input:  $X \subseteq \Gamma$ ,  $k \in \mathbb{N}$
- $\odot$  Output: A partition  $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$  that minimizes:

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y)$$

- $\odot$  Approximation:  $O(\log n)$  [Behsaz et al.'15]
- ⊚ Hardness:  $1 + \varepsilon$  [Guruswami-Indyk'03]

### Theorem (Cohen-Addad-K-Lee'21)

Given input (X, k), it is NP-hard to distinguish:

### Theorem (Cohen-Addad–K–Lee'21)

Given input (X, k), it is NP-hard to distinguish:

YES: There exists a partition  $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$  such that

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y) \leq n',$$

#### Theorem (Cohen-Addad–K–Lee'21)

Given input (X, k), it is NP-hard to distinguish:

YES: There exists a partition  $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$  such that

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y) \leq n',$$

**NO**: For every partition  $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$  we have

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y) \geq \mathbf{1.41} \cdot n'.$$

### Theorem (Cohen-Addad-K-Lee'21)

Given input (X, k), it is NP-hard to distinguish:

YES: There exists a partition  $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$  such that

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y) \leq n',$$

**NO**: For every partition  $X := X_1 \dot{\cup} X_2 \dot{\cup} \cdots \dot{\cup} X_k$  we have

$$\sum_{i \in [k]} \sum_{x,y \in X_i} \Delta(x,y) \geq 1.41 \cdot n'.$$

Key Ingredient: Hard Instances of Max-Coverage with large girth

Improved Inapproximability of

Improved Inapproximability of

 $\odot$  *k*-means and *k*-median in  $\ell_p$ -metric using JCH framework

### Improved Inapproximability of

- $\circ$  *k*-means and *k*-median in  $\ell_p$ -metric using JCH framework
- Continuous versions of k-means and k-median in General metric

### Improved Inapproximability of

- $\circ$  *k*-means and *k*-median in  $\ell_p$ -metric using JCH framework
- Continuous versions of k-means and k-median in General metric
- ⊚ *k*-minsum in General metric

# THANK YOU!