Ultrametrics Meet Fine-Grained Complexity

Karthik C. S. (Tel Aviv University)

Joint work with

Vincent Cohen-Addad (Google)

Guillaume Lagarde (LaBRI)

- \odot (Γ , Δ) is a metric space
 - $\circ \ \Delta(a,b) \leq \Delta(a,c) + \Delta(b,c)$

 \odot (Γ , Δ) is a metric space

 $\circ \ \Delta(a,b) \leq \Delta(a,c) + \Delta(b,c)$

⊚ Ultrametric: $\forall a, b, c \in \Gamma$,

 $\Delta(a,b) \leq \max\{\Delta(a,c),\Delta(b,c)\}$

 \odot (Γ , Δ) is a metric space

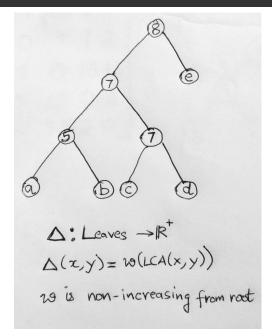
$$\circ \ \Delta(a,b) \leq \Delta(a,c) + \Delta(b,c)$$

 $\Delta(a,b) \leq \max\{\Delta(a,c),\Delta(b,c)\}$

◎ Cool Property: $\forall a, b, c \in \Gamma$,

 $\Delta(a,b) = \Delta(a,c)$ or $\Delta(a,c) = \Delta(b,c)$ or $\Delta(a,b) = \Delta(b,c)$

e Δ : Leaves $\rightarrow \mathbb{R}^+$ $\Delta(x,y) = vo(LCA(x,y))$ 29 is non-increasing from root

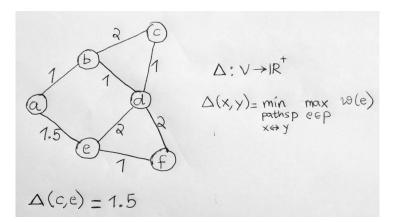


Arises in:

- Evolutionary Biology
- Hierarchical Clustering

- ◎ Topology: Discrete metric
- ◎ Number Theory: *p*-adic numbers
- ◎ Graph Theory: Minmax paths

- ◎ Topology: Discrete metric
- ◎ Number Theory: *p*-adic numbers
- ◎ Graph Theory: Minmax paths



Focus on Embedding

- Focus on Embedding
- Embedding from Ultrametric

- Focus on Embedding
- Embedding from Ultrametric
 - Not today

- Focus on Embedding
- Sembedding from Ultrametric
 - Not today
- Embedding to Ultrametric

- Socus on Embedding
- Sembedding from Ultrametric
 - Not today
- Embedding to Ultrametric

 $\begin{aligned} \tau: X \to L, \ \forall x, y \in X, \\ \|x - y\|_p &\leq \Delta(\tau(x), \tau(y)) = w(\mathsf{LCA}(\tau(x), \tau(y))) \leq \rho_{\mathsf{OPT}} \cdot \|x - y\|_p \end{aligned}$

Motivation: Data Visualization

 $\{a,b,c,d,e\}\subseteq \mathbb{R}^{100}$

Motivation: Data Visualization

 $\{a,b,c,d,e\}\subseteq \mathbb{R}^{100}$

 $\begin{array}{c} a & b & c & d \\ a & 0 & 1 & 1.5 & 2 & 1 \\ b & 1 & 0 & 1 & 1 & 2 \\ c & 1.5 & 1 & 0 & 1.5 & 1.5 \\ d & 2 & 1 & 1.5 & 0 & 2 \\ e & 1 & 2 & 1.5 & 2 & 0 \end{array}$

Motivation: Data Visualization

 $\{a,b,c,d,e\}\subseteq \mathbb{R}^{100}$

 $\begin{array}{c} a & b & c & d \\ a & 0 & 1 & 1.5 & 2 & 1 \\ b & 1 & 0 & 1 & 1 & 2 \\ c & 1.5 & 1 & 0 & 1.5 & 1.5 \\ d & 2 & 1 & 15 & 0 & 2 \\ e & 1 & 2 & 1.5 & 2 & 0 \end{array}$

Given the distance matrix of *n* points, the optimal ultrametric embedding can be computed in time $O(n^2)$.

Given the distance matrix of *n* points, the optimal ultrametric embedding can be computed in time $O(n^2)$.

Theorem (Cohen-Addad–K–Lagarde)

• Assuming SETH, no 1.5 approximate embedding in $n^{1.99}$ time from ℓ_{∞} -metric.

Given the distance matrix of *n* points, the optimal ultrametric embedding can be computed in time $O(n^2)$.

Theorem (Cohen-Addad–K–Lagarde)

- Assuming SETH, no 1.5 approximate embedding in $n^{1.99}$ time from ℓ_{∞} -metric.
- Assuming non-standard hypothesis, no 1.001 approximate in $n^{1+o(1)}$ time from Euclidean metric.

Given the distance matrix of *n* points, the optimal ultrametric embedding can be computed in time $O(n^2)$.

Theorem (Cohen-Addad–K–Lagarde)

- Assuming SETH, no 1.5 approximate embedding in $n^{1.99}$ time from ℓ_{∞} -metric.
- Assuming non-standard hypothesis, no 1.001 approximate in $n^{1+o(1)}$ time from Euclidean metric.
- ◎ For any $\gamma \ge 1$, 5 γ approximate embedding in time $O(n^{1+\frac{1}{\gamma^2}})$ for Euclidean metric.

Given the distance matrix of *n* points, the optimal ultrametric embedding can be computed in time $O(n^2)$.

Theorem (Cohen-Addad–K–Lagarde)

- Assuming SETH, no 1.5 approximate embedding in $n^{1.99}$ time from ℓ_{∞} -metric.
- Assuming non-standard hypothesis, no 1.001 approximate in $n^{1+o(1)}$ time from Euclidean metric.

in Experiments!

◎ For any $\gamma \ge 1$, 5γ approximate embedding in time $O(n^{1+\frac{1}{\gamma^2}})$ for Euclidean metric. Performs Well

Input: An edge-weighted clique GOutput: An ultrametric tree T^{ULT}

Input: An edge-weighted clique GOutput: An ultrametric tree T^{ULT}

1. Compute Minimum Spanning Tree T^G

Input: An edge-weighted clique GOutput: An ultrametric tree T^{ULT}

- 1. Compute Minimum Spanning Tree *T^G*
- 2. Compute cut weights of T^G , i.e., $\forall e \in E(T^G)$:

Input: An edge-weighted clique GOutput: An ultrametric tree T^{ULT}

- 1. Compute Minimum Spanning Tree T^G
- 2. Compute cut weights of T^G , i.e., $\forall e \in E(T^G)$:

 $P(e) = \{(i, j) \in V \times V \mid e \in \operatorname{Path}_{T^G}(i, j), \ \Delta_{\max}(i, j) = w(e)\}$ $C(e) = \max_{(i, j) \in P(e)} \|v_i - v_j\|_p$

3. Build ultrametric tree:

Input: An edge-weighted clique GOutput: An ultrametric tree T^{ULT}

- 1. Compute Minimum Spanning Tree T^G
- 2. Compute cut weights of T^G , i.e., $\forall e \in E(T^G)$:

- 3. Build ultrametric tree:
 - Leaves are V
 - **Root** is $e \in E(T^G)$ of max weight

Input: An edge-weighted clique GOutput: An ultrametric tree T^{ULT}

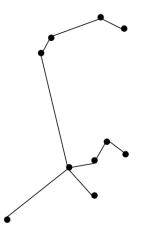
- 1. Compute Minimum Spanning Tree T^G
- **2**. Compute **cut weights** of T^G , i.e., $\forall e \in E(T^G)$:

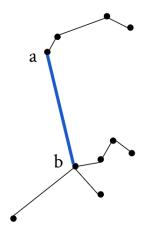
- 3. Build ultrametric tree:
 - Leaves are V
 - **Root** is $e \in E(T^G)$ of max weight
 - Recursively build both children components of root

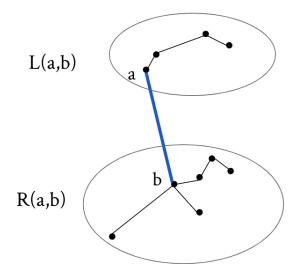
Input: An edge-weighted clique GOutput: An ultrametric tree T^{ULT}

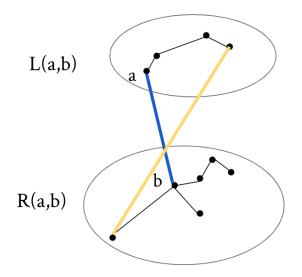
- 1. Compute Minimum Spanning Tree T^G
- **2**. Compute **cut weights** of T^G , i.e., $\forall e \in E(T^G)$:

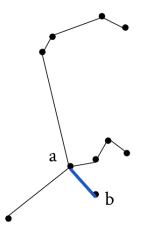
- 3. Build ultrametric tree:
 - Leaves are V
 - **Root** is $e \in E(T^G)$ of max weight
 - Recursively build both children components of root
 - Weight of internal node *e* is *CW*(*e*)

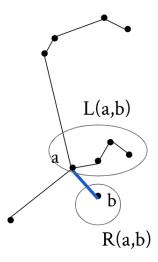


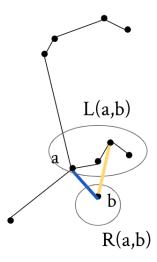




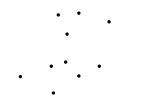








Our Approximation Algorithm



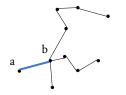
1. Compute a γ -approximate MST T^G over the complete graph G

1. Compute a γ -approximate MST T^G over the complete graph G

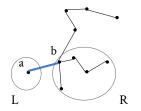
1. Compute a γ -approximate MST T^G over the complete graph G

$$w(\searrow) \ge 1/\gamma . max(\diagdown)$$

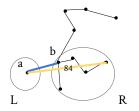
- 1. Compute a γ -approximate MST T^G over the complete graph G
- 2. Compute a β -estimate of the cut weights of the edges in T^G



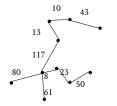
- 1. Compute a γ -approximate MST T^Gover the complete graph G
- 2. Compute a β -estimate of the cut weights of the edges in T^G



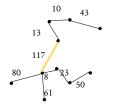
- 1. Compute a γ -approximate MST T^G over the complete graph G
- 2. Compute a β -estimate of the cut weights of the edges in T^G



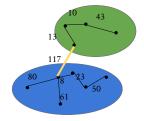
- 1. Compute a γ -approximate MST T^G over the complete graph G
- 2. Compute a β -estimate of the cut weights of the edges in T^G



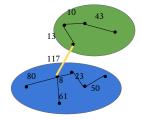
- 1. Compute a γ -approximate MST T^G over the complete graph G
- 2. Compute a β -estimate of the cut weights of the edges in T^G

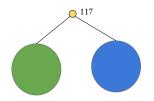


- 1. Compute a γ -approximate MST T^G over the complete graph G
- 2. Compute a β -estimate of the cut weights of the edges in T^G
- 3. Compute the ultrametric tree using $T^{G}% =\left(\left(1-\frac{1}{2}\right) \right) T^{G}$ and β -estimates

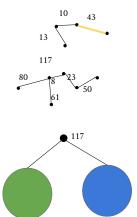


- 1. Compute a γ -approximate MST T^G over the complete graph G
- 2. Compute a β -estimate of the cut weights of the edges in T^G
- 3. Compute the ultrametric tree using $T^{\rm G}$ and $\beta\text{-estimates}$

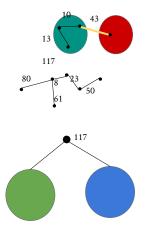




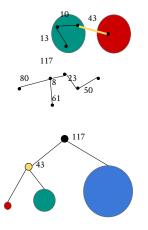
- 1. Compute a γ -approximate MST T^G over the complete graph G
- 2. Compute a β -estimate of the cut weights of the edges in T^G
- 3. Compute the ultrametric tree using $T^{\rm G}$ and $\beta\text{-estimates}$



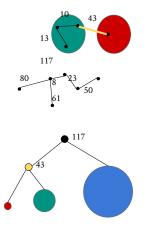
- Compute a γ-approximate MST T^G over the complete graph G
- 2. Compute a β -estimate of the cut weights of the edges in T^G
- 3. Compute the ultrametric tree using $T^{G}% =\left(\left(T^{G},\sigma\right) \right) ^{T}$ and β -estimates



- Compute a γ-approximate MST T^G over the complete graph G
- 2. Compute a β -estimate of the cut weights of the edges in T^G
- 3. Compute the ultrametric tree using $T^{\rm G}$ and $\beta\text{-estimates}$



- Compute a γ-approximate MST T^G over the complete graph G
- 2. Compute a β -estimate of the cut weights of the edges in T^G
- 3. Compute the ultrametric tree using $T^{\rm G}$ and $\beta\text{-estimates}$



- 1. Compute a γ -approximate MST T^G over the complete graph G
- 2. Compute a β -estimate of the cut weights of the edges in T^G
- 3. Compute the ultrametric tree using $T^{G}% =\left(\left(T^{G},\sigma\right) \right) ^{T}$ and β -estimates
- \rightarrow This gives a $\gamma \cdot \beta$ -approximation

Our Approximation Algorithm: Implementation

◎ For any $\gamma \ge 1$, γ -spanner constructions of Har-Peled, Indyk, Sidiropoulos in time $O(nd + n^{1+O(1/\gamma^2)})$

- ◎ For any $\gamma \ge 1$, γ -spanner constructions of Har-Peled, Indyk, Sidiropoulos in time $O(nd + n^{1+O(1/\gamma^2)})$
- $\odot \beta$ = 5-estimate using a variant of union-find data structure

Theorem (Cohen-Addad–K–Lagarde)

Assuming SETH, for every $\varepsilon > 0$, no algorithm running in $n^{2-\varepsilon}$ time, given $X \in \mathbb{R}^{O_{\varepsilon}(\log n)}(|X| = n)$ in ℓ_{∞} -space can distinguish:

YES: X can be embedded isometrically into an ultrametric. NO: Distortion is at least $\frac{3}{2}$.

Theorem (Cohen-Addad–K–Lagarde)

Assuming SETH, for every $\varepsilon > 0$, no algorithm running in $n^{2-\varepsilon}$ time, given $X \in \mathbb{R}^{O_{\varepsilon}(\log n)}(|X| = n)$ in ℓ_{∞} -space can distinguish:

YES: X can be embedded isometrically into an ultrametric. NO: Distortion is at least $\frac{3}{2}$.

Morally Equivalent to Search Version

Theorem (Cohen-Addad–K–Lagarde)

Assuming SETH, for every $\varepsilon > 0$, no algorithm running in $n^{2-\varepsilon}$ time, given $X \in \mathbb{R}^{O_{\varepsilon}(\log n)}(|X| = n)$ in ℓ_{∞} -space can distinguish:

YES: X can be embedded isometrically into an ultrametric. NO: Distortion is at least 3/2.

Theorem (David–K–Laekhanukit'19)

Assuming SETH, for every $\varepsilon > 0$, no algorithm running in $n^{2-\varepsilon}$ time, given $A, B \in \mathbb{R}^{O_{\varepsilon}(\log n)}$ (|A| = |B| = n) can distinguish:

YES: $\exists (a, b) \in A \times B$ such that $||a - b||_{\infty} = 1$. NO: $\forall (a, b) \in A \times B$ we have $||a - b||_{\infty} = 3$.

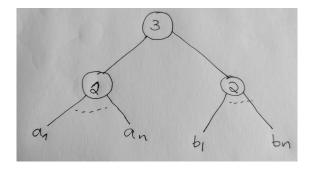
Moreover, in both cases dist(A) = dist(B) = 2 and $dist(A, B) \in \{1, 3\}$.

◎ Input:
$$A, B \in \mathbb{R}^{O(\log n)}$$
 ($|A| = |B| = n$)

- ◎ Promise: $\forall a, a' \in A$ and $\forall b, b' \in B$: $||a a'||_{\infty} = ||b b'||_{\infty} = 2$
- ◎ Case Assumption: $\forall (a, b) \in A \times B$ we have $||a b||_{\infty} = 3$

◎ Input:
$$A, B \in \mathbb{R}^{O(\log n)}$$
 ($|A| = |B| = n$)

- ◎ Promise: $\forall a, a' \in A$ and $\forall b, b' \in B$: $||a a'||_{\infty} = ||b b'||_{\infty} = 2$
- ◎ Case Assumption: $\forall (a, b) \in A \times B$ we have $||a b||_{\infty} = 3$



◎ Input:
$$A, B \in \mathbb{R}^{O(\log n)}$$
 ($|A| = |B| = n$)

- ◎ Promise: $\forall a, a' \in A$ and $\forall b, b' \in B$: $||a a'||_{\infty} = ||b b'||_{\infty} = 2$
- ◎ Case Assumption: $\exists (a, b) \in A \times B$ such that $||a b||_{\infty} = 1$

◎ Input:
$$A, B \in \mathbb{R}^{O(\log n)}$$
 ($|A| = |B| = n$)

- ◎ Promise: $\forall a, a' \in A$ and $\forall b, b' \in B$: $||a a'||_{\infty} = ||b b'||_{\infty} = 2$
- ◎ Case Assumption: $\exists (a, b) \in A \times B$ such that $||a b||_{\infty} = 1$
- ◎ Let *S* : {*a*, *a'*, *b*} such that ||a b|| = 1 and ||a' b|| = 3

◎ Input:
$$A, B \in \mathbb{R}^{O(\log n)}$$
 ($|A| = |B| = n$)

- ◎ Promise: $\forall a, a' \in A$ and $\forall b, b' \in B$: $||a a'||_{\infty} = ||b b'||_{\infty} = 2$
- ◎ Case Assumption: $\exists (a, b) \in A \times B$ such that $||a b||_{\infty} = 1$
- ◎ Let *S* : {*a*, *a'*, *b*} such that ||a b|| = 1 and ||a' b|| = 3
- ⊙ Let τ : *S* → *L* be ultrametric embedding and ρ be distortion

◎ Input:
$$A, B \in \mathbb{R}^{O(\log n)}$$
 ($|A| = |B| = n$)

- ◎ Promise: $\forall a, a' \in A$ and $\forall b, b' \in B$: $||a a'||_{\infty} = ||b b'||_{\infty} = 2$
- ◎ Case Assumption: $\exists (a, b) \in A \times B$ such that $||a b||_{\infty} = 1$
- ◎ Let *S* : {*a*, *a'*, *b*} such that ||a b|| = 1 and ||a' b|| = 3
- ⊙ Let τ : *S* → *L* be ultrametric embedding and ρ be distortion

$$\begin{aligned} 3 &= \|a' - b\|_{\infty} \leq \Delta(\tau(a'), \tau(b)) \\ &\leq \max\{\Delta(\tau(a), \tau(b)), \Delta(\tau(a'), \tau(a))\} \\ &\leq \max\{\rho \cdot \|a - b\|_{\infty}, \rho \cdot \|a' - a\|_{\infty}\} = 2\rho \end{aligned}$$

◎ YES case: Input is *n* points sampled from \Re_d .

- ◎ YES case: Input is *n* points sampled from \mathfrak{B}_d .
- ◎ NO case:
 - Sample (a_1, \ldots, a_n) from \mathfrak{B}_d .

- ◎ YES case: Input is *n* points sampled from \mathfrak{B}_d .
- ◎ NO case:
 - Sample (a_1, \ldots, a_n) from \mathfrak{B}_d .
 - Pick distinct indices *i*, *j*, *k* in [*n*] at random.

- ◎ YES case: Input is *n* points sampled from \mathfrak{B}_d .
- ◎ NO case:
 - Sample (a_1, \ldots, a_n) from \mathfrak{B}_d .
 - Pick distinct indices *i*, *j*, *k* in [*n*] at random.
 - Let $a_{i,j}$ be the midpoint of a_i and a_j .

- ◎ YES case: Input is *n* points sampled from \mathfrak{B}_d .
- ◎ NO case:
 - Sample (a_1, \ldots, a_n) from \mathfrak{B}_d .
 - Pick distinct indices *i*, *j*, *k* in [*n*] at random.
 - Let $a_{i,j}$ be the midpoint of a_i and a_j .
 - Let $\widetilde{a_k}$ be $(1 \rho) \cdot a_k + \rho \cdot a_{i,j}$.

- ◎ YES case: Input is *n* points sampled from \mathfrak{B}_d .
- ◎ NO case:
 - Sample (a_1, \ldots, a_n) from \mathfrak{B}_d .
 - Pick distinct indices *i*, *j*, *k* in [*n*] at random.
 - Let $a_{i,j}$ be the midpoint of a_i and a_j .
 - Let $\widetilde{a_k}$ be $(1 \rho) \cdot a_k + \rho \cdot a_{i,j}$.
 - Input is $(a_1, \ldots, \widetilde{a_k}, a_{k+1}, \ldots, a_n)$.

◎ Colinearity Hypothesis: There exists constants ρ , $\varepsilon > 0$ such that no randomized algorithm running in time $n^{1+\varepsilon}$ can distinguish the two cases for every $d \ge O_{\rho,\varepsilon}(\log n)$.

- ◎ **Colinearity Hypothesis:** There exists constants ρ , $\varepsilon > 0$ such that no randomized algorithm running in time $n^{1+\varepsilon}$ can distinguish the two cases for every $d \ge O_{\rho,\varepsilon}(\log n)$.
- Worst Case variant is 3-SUM hard for even d = 2.

- ◎ **Colinearity Hypothesis:** There exists constants ρ , $\varepsilon > 0$ such that no randomized algorithm running in time $n^{1+\varepsilon}$ can distinguish the two cases for every $d \ge O_{\rho,\varepsilon}(\log n)$.
- Worst Case variant is 3-SUM hard for even d = 2.
- Related to Light bulb problem.

- ◎ **Colinearity Hypothesis:** There exists constants ρ , $\varepsilon > 0$ such that no randomized algorithm running in time $n^{1+\varepsilon}$ can distinguish the two cases for every $d \ge O_{\rho,\varepsilon}(\log n)$.
- Worst Case variant is 3-SUM hard for even d = 2.
- Related to Light bulb problem.

Theorem (Cohen-Addad–K–Lagarde)

Assuming CH, there exists ε , $\delta > 0$, no randomized algorithm running in $n^{1+\varepsilon}$ time, given $X \in \mathbb{R}^{O_{\varepsilon,\delta}(\log n)}$ (|X| = n) in Euclidean space can distinguish:

YES: Distortion is at most $1 + \delta$. NO: Distortion is at least $1 + 2\delta$.

Theorem (Farach–Kannan–Warnow'95)

Given the distance matrix of *n* points, the optimal ultrametric embedding can be computed in time $O(n^2)$.

Theorem (Cohen-Addad–K–Lagarde)

- Assuming SETH, no 1.5 approximate embedding in $n^{1.99}$ time from ℓ_{∞} -metric.
- Assuming Colinearity Hypothesis, no 1.001 approximate in $n^{1+o(1)}$ time from Euclidean metric.
- ◎ For any $\gamma \ge 1$, 5γ approximate embedding in time $O(n^{1+\frac{1}{\gamma^2}})$ for Euclidean metric.

Theorem (Farach–Kannan–Warnow'95)

Given the distance matrix of *n* points, the optimal ultrametric embedding can be computed in time $O(n^2)$.

Theorem (Cohen-Addad–K–Lagarde)

- Assuming SETH, no 1.5 approximate embedding in $n^{1.99}$ time from ℓ_{∞} -metric.
- Assuming Colinearity Hypothesis, no 1.001 approximate in $n^{1+o(1)}$ time from Euclidean metric.

in Experiments!

◎ For any $\gamma \ge 1$, 5γ approximate embedding in time $O(n^{1+\frac{1}{\gamma^2}})$ for Euclidean metric. Performs Well

Improved Approximation Factor?

Improved Approximation Factor?

Euclidean Inapproximability under SETH?

Improved Approximation Factor?

Euclidean Inapproximability under SETH?

More Applications of Colinearity Hypothesis?

THANK YOU!