
Ultrametrics Meet

Fine-Grained Complexity

Karthik C. S.
(Tel Aviv University)

Joint work with

Vincent Cohen-Addad
(Google)

Guillaume Lagarde
(LaBRI)



Ultrametrics

} (Γ,Δ) is a metric space

◦ Δ(0, 1) 6 Δ(0, 2) + Δ(1, 2)

} Ultrametric: ∀0, 1, 2 ∈ Γ,

Δ(0, 1) 6 max{Δ(0, 2),Δ(1, 2)}

} Cool Property: ∀0, 1, 2 ∈ Γ,

Δ(0, 1) = Δ(0, 2) or Δ(0, 2) = Δ(1, 2) or Δ(0, 1) = Δ(1, 2)
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Example

Arises in:

} Evolutionary Biology

} Hierarchical Clustering
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Directions

} Focus on Embedding

} Embedding from Ultrametric
◦ Not today

} Embedding to Ultrametric

� : - → !, ∀G, H ∈ -,

‖G − H‖? ≤ Δ(�(G), �(H)) = F(LCA(�(G), �(H))) ≤ �OPT · ‖G − H‖?
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Motivation: Data Visualization

{0, 1, 2, 3, 4} ⊆ ℝ100
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Results

Theorem (Farach–Kannan–Warnow’95)
Given the distance matrix of = points, the optimal ultrametric
embedding can be computed in time $(=2).

Theorem (Cohen-Addad–K–Lagarde)

} Assuming SETH, no 1.5 approximate embedding in =1.99

time from ℓ∞-metric.
} Assuming non-standard hypothesis, no 1.001 approximate

in =1+>(1) time from Euclidean metric.
} For any � ≥ 1, 5� approximate embedding in time

$(=1+ 1
�2 ) for Euclidean metric.

Performs Well
in Experiments!
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Farach–Kannan–Warnow’95: Algorithm

Input: An edge-weighted clique �

Output: An ultrametric tree )ULT

1. Compute Minimum Spanning Tree )�

2. Compute cut weights of )�, i.e., ∀4 ∈ �()�):

%(4) = {(8 , 9) ∈ + ×+ | 4 ∈ Path)� (8 , 9), Δmax(8 , 9) = F(4)}

�(4) = max
(8 , 9)∈%(4)

‖E8 − E 9 ‖?

3. Build ultrametric tree:
◦ Leaves are +
◦ Root is 4 ∈ �()�) of max weight
◦ Recursively build both children components of root
◦ Weight of internal node 4 is �,(4)
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Cut weights: Illustration
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Our Approximation Algorithm

APPROX-BUF: an approximation algorithm for BUF∞

1. Compute a  γ-approximate MST TG over 
the complete graph G

2. Compute a β-estimate of the cut weights 
of the edges in TG

3. Compute the ultrametric tree using TG 
and β-estimates
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80 8

117

43

→ This gives a γ · β-approximation 
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Our Approximation Algorithm: Implementation

} For any � ≥ 1, �-spanner constructions of Har-Peled,
Indyk, Sidiropoulos in time$(=3 + =1+$(1/�2))

} � = 5-estimate using a variant of union-find data structure
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Hardness from SETH

Theorem (Cohen-Addad–K–Lagarde)
Assuming SETH, for every � > 0, no algorithm running in =2−�

time, given - ∈ ℝ$�(log =) (|- | = =) in ℓ∞-space can distinguish:

YES: - can be embedded isometrically into an ultrametric.
NO: Distortion is at least 3/2.

⇒

Theorem (David–K–Laekhanukit’19)
Assuming SETH, for every � > 0, no algorithm running in =2−�

time, given �, � ∈ ℝ$�(log =) (|�| = |�| = =) can distinguish:

YES: ∃(0, 1) ∈ � × � such that ‖0 − 1‖∞ = 1.
NO: ∀(0, 1) ∈ � × � we have ‖0 − 1‖∞ = 3.

Moreover, in both cases dist(�) =dist(�) = 2 and dist(�, �) ∈ {1, 3}.

Morally Equivalent
to Search Version
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NO: ∀(0, 1) ∈ � × � we have ‖0 − 1‖∞ = 3.

Moreover, in both cases dist(�) =dist(�) = 2 and dist(�, �) ∈ {1, 3}.

Morally Equivalent
to Search Version
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Hardness from SETH: YES case

} Input: �, � ∈ ℝ$(log =) (|�| = |�| = =)

} Promise: ∀0, 0′ ∈ � and ∀1, 1′ ∈ �: ‖0 − 0′‖∞ = ‖1 − 1′‖∞ = 2

} Case Assumption: ∀(0, 1) ∈ � × � we have ‖0 − 1‖∞ = 3
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Hardness from SETH: NO case

} Input: �, � ∈ ℝ$(log =) (|�| = |�| = =)

} Promise: ∀0, 0′ ∈ � and ∀1, 1′ ∈ �: ‖0 − 0′‖∞ = ‖1 − 1′‖∞ = 2

} Case Assumption: ∃(0, 1) ∈ � × � such that ‖0 − 1‖∞ = 1

} Let ( : {0, 0′, 1} such that ‖0 − 1‖ = 1 and ‖0′ − 1‖ = 3

} Let � : (→ ! be ultrametric embedding and � be distortion

3 = ‖0′ − 1‖∞ ≤ Δ(�(0′), �(1))
≤ max{Δ(�(0), �(1)),Δ(�(0′), �(0))}
≤ max{� · ‖0 − 1‖∞ , � · ‖0′ − 0‖∞} = 2�
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Colinearity Problem

} YES case: Input is = points sampled from B3.

} NO case:
◦ Sample (01 , . . . , 0=) from B3.
◦ Pick distinct indices 8 , 9 , : in [=] at random.
◦ Let 08 , 9 be the midpoint of 08 and 0 9 .
◦ Let 0̃: be (1 − �) · 0: + � · 08 , 9 .
◦ Input is (01 , . . . , 0̃: , 0:+1 , . . . , 0=).
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Colinearity Hypothesis

} Colinearity Hypothesis: There exists constants �, � > 0 such that
no randomized algorithm running in time =1+� can distinguish
the two cases for every 3 ≥ $�,�(log =).

} Worst Case variant is 3-SUM hard for even 3 = 2.

} Related to Light bulb problem.

Theorem (Cohen-Addad–K–Lagarde)
Assuming CH, there exists �, � > 0, no randomized algorithm
running in =1+� time, given - ∈ ℝ$�,�(log =) (|- | = =) in Euclidean
space can distinguish:

YES: Distortion is at most 1 + �.
NO: Distortion is at least 1 + 2�.
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Results

Theorem (Farach–Kannan–Warnow’95)
Given the distance matrix of = points, the optimal ultrametric
embedding can be computed in time $(=2).

Theorem (Cohen-Addad–K–Lagarde)

} Assuming SETH, no 1.5 approximate embedding in =1.99

time from ℓ∞-metric.
} Assuming Colinearity Hypothesis, no 1.001 approximate

in =1+>(1) time from Euclidean metric.
} For any � ≥ 1, 5� approximate embedding in time

$(=1+ 1
�2 ) for Euclidean metric.

Performs Well
in Experiments!
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Open Problems

Improved Approximation Factor?

Euclidean Inapproximability under SETH?

More Applications of Colinearity Hypothesis?
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