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Task of Classifying Input Data
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What is Clustering?

} (Γ,Δ) is a metric space

} Input: - ⊆ Γ, : ∈ ℕ and S⊆ Γ

} Output: A classification (�, �):

◦ � ⊆ Γ and |� | = :

◦ � : - → �

◦ � is good

Continuous Version
Discrete

X
S
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What is Good Classification?

} :-means, :-median, :-center, min-sum, etc.

} :-median value of (�, �)∑
G∈-

Δ(G, �(G))

} :-means value of (�, �)∑
G∈-

Δ(G, �(G))2

Clustering Problem for objective Λ

No: For all classification (�, �), we have Λ(-, �) > (1 + �) · �
Yes: There is classification (�∗ , �∗), such that Λ(-, �∗) ≤ �
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Exact Computation

} NP-hard when : = 2 (Dasgupta’07)

} NP-hard in Euclidean plane
(Mahajan–Nimbhorkar–Varadarajan’12)

} W[2]-hard in general metric (Guha-Khuller’99)
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Approximation Algorithms

} General metric: :-means ≥ 9
(Ahmadian–Norouzi-Fard–Svensson–Ward’17)

} Euclidean metric :-means:

◦ Poly time approximation ≈ 6.357
(Ahmadian–Norouzi-Fard–Svensson–Ward’17)

◦ Fixed Dimension: PTAS (Cohen-Addad’18)

◦ Fixed :: PTAS (Kumar–Sabharwal–Sen’10)
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Hardness of Approximation: Before 2019

Discrete Version:

} General metric: :-means ≈ 3.94 (Guha-Khuller’99)

} ℓ2-metric: :-means� 1.01 (Trevisan’00)

} ℓ1-metric: :-means� 1.01 (Trevisan’00)

} ℓ∞-metric: :-means� 1.01 (Guruswami-Indyk’03)

Continuous Version:

} General metric: :-means ≈ 2.47 (Guha-Khuller’99)

} ℓ2-metric: :-means < 1.0013 (Lee-Schmidt-Wright’17)

I believe
is tight!

Continuous is Computationally Easier than Discrete?
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Hardness of Approximation of Metric Clustering since 2019

} Inapproximability of Clustering in ℓ?-metrics under UGC
(Cohen-Addad-K’19)

} Inapproximability of Continuous :-means, Continuous
:-median, and :-minsum in General Metric
(Cohen-Addad-K-Lee’21)

} Tight Inapproximability of Clustering in ℓ?-metrics under
JCH and NP≠P (Cohen-Addad-K-Lee’22?)
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State-of-the-art for :-means

Discrete Version

JCH UGC NP≠P

ℓ1-metric 3.94 1.56 1.38

ℓ2-metric 1.73 1.17 1.17

ℓ∞-metric 3.94 3.94 3.94

Continuous Version

General metric ≈ 4 (NP≠P)

ℓ2-metric ≈ 1.36 (JCH), 1.07 (UGC), 1.06 (NP≠P)

ℓ1-metric ≈ 2.10 (JCH), 1.16 (NP≠P)
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Warm Up: General Metrics

Theorem (Guha-Khuller’99)
Fix � > 0. Given input (-, (, :). It is NP-hard to distinguish:

YES: There exists (�∗ , �∗) such that
∑
G∈-

Δ(G, �∗(G))2 ≤ |- |

NO: For all (�, �)we have
∑
G∈-

Δ(G, �(G))2 ≥ (1 + 8/4 − �) · |- |

10
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Proof Overview: General Metrics

Max Coverage:

} Input: Universe and Collection of Subsets (*,S, :)

} Objective: Max Fraction of* covered by : subsets in S

Theorem (Feige’98)
Fix � > 0. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most 1 − 1/4 + �
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Proof Overview: General Metrics

universe

clients

sets

candidate centers

3

1u1 in S S

u2 not in S
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Warm Up: General Metrics
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Johnson Coverage Hypothesis

universe

clients

sets

candidate centers

3

1u1 in S S

u2 not in S

Johnson Coverage Hypothesis (Cohen-Addad–K–Lee)
Fix � > 0. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most 1 − 1/4 + �
even when set system is induced subgraph of Johnson graph.
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Johnson Coverage Hypothesis

(
, C)-Johnson Coverage Problem
Given � ⊆

([=]
C

)
, and : as input, distinguish between:

Completeness: There exists C := {(1 , . . . , (:} ⊆
( [=]
C−1

)
such that

∀) ∈ �, ∃(8 ∈ C, (8 ⊂ ).

Soundness: For every C := {(1 , . . . , (:} ⊆
( [=]
C−1

)
we have

Pr
)∼�
[∃(8 , (8 ⊂ )] ≤ 
.

Johnson Coverage Hypothesis (Cohen-Addad–K–Lee)
∀� > 0, ∃C� ∈ ℕ such that (1 − 1

4 + �, C�)-Johnson Coverage
problem is NP-hard.
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Johnson Coverage Hypothesis: What can we show?

} C = 2: Vertex Coverage problem

◦ ≈0.9292 gap is tight!

} 3-Hypergraph Vertex Coverage problem is NP-Hard to
approximate to a factor of 7/8

19
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Proof Framework

3 ingredients

} JCH instance

} Dimensionality reduction for all ℓ?-metrics

◦ Works only for JCH instances

◦ Arises from transcript of a communication game

} Johnson Graph Embedding into ℓ?-metrics

20
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Embedding in Hamming metric

Theorem (Cohen-Addad–K–Lee)
Assuming (
, C)-Johnson coverage problem is NP-hard,

given input -,S⊆ {0, 1}$(log =), it is NP-hard to distinguish:

YES: There exists (�∗ , �∗) such that∑
G∈-
‖(G − �∗(G)‖20 ≤ =′,

NO: For all (�, �)we have∑
G∈-
‖(G − �(G)‖20 ≥ (1 + 8 · (1 − 
)) · =′.

(0.93,2)

1.56

(1- 1
4 , C)

(
1 + 8

4

)
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Proof Framework

3 ingredients

} JCH instance

} Dimensionality reduction for all ℓ?-metrics

◦ Works only for JCH instances

◦ Arises from transcript of a communication game

} Johnson Graph Embedding into ℓ?-metrics

23



State-of-the-art for :-means

Discrete Version

JCH UGC NP≠P

ℓ1-metric 3.94 1.56 1.38

ℓ2-metric 1.73 1.17 1.17

ℓ∞-metric 3.94 3.94 3.94

Continuous Version

General metric ≈ 4 (NP≠P)

ℓ2-metric ≈ 1.36 (JCH), 1.07 (UGC), 1.06 (NP≠P)

ℓ1-metric ≈ 2.10 (JCH), 1.16 (NP≠P) 24



State-of-the-art for :-median

Discrete Version

JCH UGC NP≠P

ℓ1-metric 1.73 1.14 1.12

ℓ2-metric 1.27 1.07 1.07

ℓ∞-metric 1.73 1.73 1.73

Continuous Version

General metric ≈ 2 (NP≠P)

ℓ2-metric ≈ 1.08 (JCH*), 1.015 (NP≠P)

ℓ1-metric ≈ 1.36 (JCH*), 1.07 (UGC), 1.06 (NP≠P)
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Continuous :-means and :-median

Theorem (Cohen-Addad–K–Lee’21)
Given input - ⊆ ℝ$(=), it is NP-hard to distinguish:

YES: There exists (�∗ , �∗) such that
∑
G∈-
‖(G − �∗(G)‖∞2 ≤ =′,

NO: For all (�, �)we have
∑
G∈-
‖(G − �(G)‖∞2 ≥ 4 · =′.

} :-median: 2 inapproximability

Continuous is harder than Discrete!

} Constant Bicriteria inapproximability

} Assuming UGC, hardness for : = 2!

} Dependency on 3, :, and ℓ∞ tight
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Minsum (Definition)

} (Γ,Δ) is a metric space

} Input: - ⊆ Γ, : ∈ ℕ

} Output: A partition - := -1 ¤∪-2 ¤∪ · · · ¤∪-: that minimizes:

∑
8∈[:]

∑
G,H∈-8

Δ(G, H)

} Approximation: $(log =) [Behsaz et al.’15]

} Hardness: 1 + � [Guruswami-Indyk’03]
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Minsum (Result)

Theorem (Cohen-Addad–K–Lee’21)
Given input (-, :), it is NP-hard to distinguish:

YES: There exists a partition - := -1 ¤∪-2 ¤∪ · · · ¤∪-: such that∑
8∈[:]

∑
G,H∈-8

Δ(G, H) ≤ =′,

NO: For every partition - := -1 ¤∪-2 ¤∪ · · · ¤∪-: we have∑
8∈[:]

∑
G,H∈-8

Δ(G, H) ≥ 1.41 · =′.

Key Ingredient: Hard Instances of Max-Coverage
with large girth

28
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Key Takeaways

Improved Inapproximability of

} :-means and :-median in ℓ?-metric using JCH framework

} Continuous versions of :-means and :-median in General
metric

} :-minsum in General metric
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Johnson Coverage Hypothesis

(
, C)-Johnson Coverage Problem
Given � ⊆

([=]
C

)
, and : as input, distinguish between:

Completeness: There exists C := {(1 , . . . , (:} ⊆
( [=]
C−1

)
such that

∀) ∈ �, ∃(8 ∈ C, (8 ⊂ ).

Soundness: For every C := {(1 , . . . , (:} ⊆
( [=]
C−1

)
we have

Pr
)∼�
[∃(8 , (8 ⊂ )] ≤ 
.

Johnson Coverage Hypothesis (Cohen-Addad–K–Lee)
∀� > 0, ∃C� ∈ ℕ such that (1 − 1

4 + �, C�)-Johnson Coverage
problem is NP-hard.
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Johnson Coverage Hypothesis: Discussion

} C = 2: Vertex Coverage problem

◦ ≈0.9292 gap is tight!

} Pick C := {(1 , . . . , (:} ⊆
([=]

1
)
: Max Coverage problem

◦ As C increases, gap approaches 1 − 1
4

} LP Integrality gap:

Determine smallest collection in
( [=]
C−1

)
that hits all of

([=]
C

)
◦ Hypergraph Turán number: Open since 1940s!

◦ Recently resolved for C = 3

Is JCH true?
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State-of-the-art for :-means

Discrete Version

JCH UGC NP≠P

ℓ1-metric 3.94 1.56 1.38

ℓ2-metric 1.73 1.17 1.17

ℓ∞-metric 3.94 3.94 3.94

Continuous Version

General metric ≈ 4 (NP≠P)

ℓ2-metric ≈ 1.36 (JCH), 1.07 (UGC), 1.06 (NP≠P)

ℓ1-metric ≈ 2.10 (JCH), 1.16 (NP≠P)

ℓ∞-metric ≈ ???
34



Inapproximability of Clustering in Euclidean metrics

([=]
C

)
( [=]
C−1

)

([=]
C

)
( [=]
C−1

)

1 √
3

Points in {0, 1}3
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Other Open Problems

} :-minsum in ℓ?-metrics

} Capacitated Clustering

} Fair Clustering
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