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© (I, A) is a metric space

© Input: XTI, keN and SCT

© Output: A classification (C, 0):
S

o CcXand |C|=k
og:X—>C

o ¢ is good
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© Euclidean metric k-means:

o Poly time approximation ~ 6.357
(Ahmadian—Norouzi-Fard-Svensson-Ward’17)

o Fixed Dimension: PTAS (Cohen-Addad’18)
o Fixed k: PTAS (Kumar-Sabharwal-Sen’10)
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_ I believe
Discrete Version: is tight!

© General metric: k-means = 3.94 (Guha-Khuller’9g)
© f-metric: k-means < 1.01 (Trevisan’o0)
©® f1-metric: k-means < 1.01 (Trevisan’o0)

© fo-metric: k-means < 1.01 (Guruswami-Indyk’o3)

Continuous Version:

© General metric: k-means ~ 2.47 (Guha-Khuller'gg)

© f-metric: k-means < 1.0013 (Lee-Schmidt-Wright'17)

Continuous is Computationally Easier than Discrete? .
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© Inapproximability of Clustering in £,-metrics under UGC
(Cohen-Addad-K’19)

© Inapproximability of Continuous k-means, Continuous
k-median, and k-minsum in General Metric
(Cohen-Addad-K-Lee'21)

© Tight Inapproximability of Clustering in £,-metrics under
JCH and NP#P (Cohen-Addad-K-Lee'22?)
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Discrete Version

JCH UGC NP#P
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Continuous Version

General metric ~ 4 (NP#P)
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{1-metric ~ 2.10 (JCH), 1.16 (NP+P)
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Theorem (Guha-Khuller'99)
Fix ¢ > 0. Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists (C*, 0*) such that Y, A(x, 0*(x))? < |X]|
xeX
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Theorem (Guha-Khuller'99)
Fix ¢ > 0. Given input (X, S, k). It is NP-hard to distinguish:

YES: There exists (C*, 0*) such that Y, A(x, o*(x))* < |X]|
xeX
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Johnson Coverage Hypothesis

universe

-] candidate centers

clients

Johnson Coverage Hypothesis (Cohen-Addad—K-Lee)
Fix ¢ > 0. It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is at most 1 — 1/e + ¢

even when set system is induced subgraph of Johnson graph. 1
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(a, t)-Johnson Coverage Problem

Given E C ([?]), and k as input, distinguish between:

Completeness: There exists 6 := {S1,...,S5¢} € (t[ﬂ) such that
VT €E, 35S, €%, S; cT.

Soundness: For every 6 := {S1,...,5¢} € (t[f]l) we have

Pr[3S;, S; cT] < a.
T~E

Johnson Coverage Hypothesis (Cohen-Addad—K-Lee)

Ve > 0, dt, € N such that (1 — % + ¢, t¢)-Johnson Coverage
problem is NP-hard.
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© t = 2: Vertex Coverage problem
o ~0.9292 gap is tight!

© 3-Hypergraph Vertex Coverage problem is NP-Hard to
approximate to a factor of 7/8
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Discrete Version

JCH UGC NP#P
{1-metric 1.73 1.14 1.12
{>-metric 1.27 1.07 1.07
{s-metric 1.73 1.73 1.73

Continuous Version

General metric ~ 2 (NP+#P)
{r-metric = 1.08 (JCHY), 1.015 (NP+#P)
{1-metric = 1.36 (JCH?), 1.07 (UGC), 1.06 (NP+#P) .
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Continuous k-means and k-median

Theorem (Cohen-Addad—K-Lee’21)
Given input X € RO™ it is NP-hard to distinguish:

YES: There exists (C*, 0*) such that 3 [|[(x = 0*(%)||e? < 1/,
xeX

NO: For all (C, o) we have Y ||(x — 0(x)||c® > 4 - 1.
xeX

© k-median: 2 inapproximability
Continuous is harder than Discrete!
© Constant Bicriteria inapproximability

© Assuming UGC, hardness for k = 2!

© Dependency on d, k, and {w tight
26
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© Input: X CTI, keN

® Output: A partition X := X;UX,U - - - UX) that minimizes:

D, D, Axy)

ie[k] x,yeX;

© Approximation: O(logn) [Behsaz et al.'15]

© Hardness: 1 + ¢ [Guruswami-Indyk’o3]
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with large girth
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Johnson Coverage Hypothesis

(a, t)-Johnson Coverage Problem

Given E C ([?]), and k as input, distinguish between:

Completeness: There exists 6 := {S1,...,S5¢} € (t[ﬂ) such that
VT € E, 3S; €€, S; cT.
Soundness: For every 6 := {S1,...,5¢} € (t[f]l) we have

Pr[3S;, S; cT] < a.
T~E
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(a, t)-Johnson Coverage Problem

Given E C ([?]), and k as input, distinguish between:

Completeness: There exists 6 := {S1,...,S5¢} € (t[ﬂ) such that
VT €E, 35S, €%, S; cT.

Soundness: For every 6 := {S1,...,5¢} € (t[f]l) we have

Pr[3S;, S; cT] < a.
T~E

Johnson Coverage Hypothesis (Cohen-Addad—K-Lee)

Ve > 0, dt, € N such that (1 — % + ¢, t¢)-Johnson Coverage

problem is NP-hard.
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© t = 2: Vertex Coverage problem
o ~0.9292 gap is tight!

© Pick € :={S1,...,S5¢} C (['11]): Max Coverage problem

o As t increases, gap approaches 1 — %

© LP Integrality gap:

Determine smallest collection in ( t[f]l) that hits all of ([’:])

o Hypergraph Turdn number: Open since 1940s!

o Recently resolved for t =3

Is JCH true?
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State-of-the-art for k-means

Discrete Version

JCH UGC NP#P
{1-metric 3.94 1.56 1.38
{-metric 1.73 1.17 1.17
{-metric 3.94 3.94 3.94

Continuous Version

General metric ~ 4 (NP#P)
{r-metric = 1.36 (JCH), 1.07 (UGC), 1.06 (NP#P)
{1-metric = 2.10 (JCH), 1.16 (NP+#P)

{oo-metric ~ ???
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Inapproximability of Clustering in Euclidean metrics

Points in {0, 1}¢

o.. 0 O @, o O
1“, \\\
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35



Other Open Problems

© k-minsum in £,-metrics

36



Other Open Problems

© k-minsum in £,-metrics

© Capacitated Clustering

36



Other Open Problems

© k-minsum in £,-metrics
© Capacitated Clustering

© Fair Clustering
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