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:-Clique

Uncolored :-Clique Problem:

Input: �(+, �)
Output: :-clique in �

Colored :-Clique Problem:

Input: �(+1 ¤∪+2 ¤∪ · · · ¤∪+: , �)
Output: :-clique in � from +1 ×+2 × · · · ×+:

Uncolored :-Clique Problem and Colored :-Clique Problem are
computationally equivalent up to $:(1) factor
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:-Set Cover
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Input: (1 , . . . , (= ⊆ [=]
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Fair Clustering

Uncolored Clustering Problem:

Input: % ⊆ ℝ3, : ∈ ℕ
Output: %1 ¤∪%2 ¤∪ · · · ¤∪%: := % minimizing some clustering objective

Colored Clustering Problem:

Input: % ⊆ ℝ3, : ∈ ℕ, 2 : % → [A]
Output: %1 ¤∪%2 ¤∪ · · · ¤∪%: := % minimizing some clustering objective
such that each %8 is well-colored by 2

Is Clustering under Fairness constraints computationally
harder than Standard Clustering?
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Closest Pair

Uncolored Closest Pair Problem:

Input: % ⊆ ℝ3

Output: 0, 1 ∈ % minimizing ‖0 − 1‖?

Colored Closest Pair Problem:

Input: �, � ⊆ ℝ3

Output: (0, 1) ∈ � × � minimizing ‖0 − 1‖?

Is Colored Closest Pair computationally harder
than Uncolored Closest Pair?
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Set Intersection

Uncolored :-Set Intersection Problem:

Input: (1 , . . . , (= ⊆ [=]
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Big Question

Using Color Coding we can reduce Uncolored version
to Colored version

Can we reduce Colored version to Uncolored version?
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Closest Pair
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Closest Pair

} Closest Pair problem (CP) in ℓ?-metric

Input: � ⊂ ℝ3, |�| = =
Output: 0∗ , 1∗ ∈ �, min

0,1∈�
0≠1

‖0 − 1‖?

} Trivial algorithm: $(=23)
Bently-Shamos’76: 2$(3)= log = (for ℓ2-metric)
Subcubic algorithms when 3 = $(=) [ILLP04, MKZ09, GS17]

} What happens when 3 ≈ polylog =?
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Bichromatic Closest Pair

} Bichromatic Closest Pair problem (BCP) in ℓ? metric

Input: �, � ⊂ ℝ3, |�| = |�| = =
Output: 0∗ ∈ �, 1∗ ∈ �, min

0∈�
1∈�
‖0 − 1‖?

} Trivial algorithm: $(=23)

} Computationally equivalent to determining Minimum
Spanning Tree in ℓ?-metric [AESW91, KLN99]

} What happens when 3 ≈ polylog =?
What happens when 3 = $(1)?
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Bichromatic Closest Pair under Fine-Grained Lens

Strong Exponential Time Hypothesis (SETH)

For every � > 0, no algorithm running in 2<(1−�) time
can solve :-SAT on < variables.

Let ? > 1. Assuming SETH, for every � > 0, no =2−� time algorithm
can solve:

} BCP in ℓ?-metric when 3 = $(log =) [AW15]

} (1 + �)-approximate BCP in ℓ?-metric when 3 = $(log =) [R18]

} BCP in ℓ?-metric when 3 = 2$(log∗ =) [W18, C18]

13



Bichromatic Closest Pair under Fine-Grained Lens

Strong Exponential Time Hypothesis (SETH)

For every � > 0, no algorithm running in 2<(1−�) time
can solve :-SAT on < variables.

Let ? > 1. Assuming SETH, for every � > 0, no =2−� time algorithm
can solve:

} BCP in ℓ?-metric when 3 = $(log =) [AW15]

} (1 + �)-approximate BCP in ℓ?-metric when 3 = $(log =) [R18]

} BCP in ℓ?-metric when 3 = 2$(log∗ =) [W18, C18]

13



Bichromatic Closest Pair under Fine-Grained Lens

Strong Exponential Time Hypothesis (SETH)

For every � > 0, no algorithm running in 2<(1−�) time
can solve :-SAT on < variables.

Let ? > 1. Assuming SETH, for every � > 0, no =2−� time algorithm
can solve:

} BCP in ℓ?-metric when 3 = $(log =) [AW15]

} (1 + �)-approximate BCP in ℓ?-metric when 3 = $(log =) [R18]

} BCP in ℓ?-metric when 3 = 2$(log∗ =) [W18, C18]

13



Bichromatic Closest Pair under Fine-Grained Lens

Strong Exponential Time Hypothesis (SETH)

For every � > 0, no algorithm running in 2<(1−�) time
can solve :-SAT on < variables.

Let ? > 1. Assuming SETH, for every � > 0, no =2−� time algorithm
can solve:

} BCP in ℓ?-metric when 3 = $(log =) [AW15]

} (1 + �)-approximate BCP in ℓ?-metric when 3 = $(log =) [R18]

} BCP in ℓ?-metric when 3 = 2$(log∗ =) [W18, C18]

13



Bichromatic Closest Pair under Fine-Grained Lens

Strong Exponential Time Hypothesis (SETH)

For every � > 0, no algorithm running in 2<(1−�) time
can solve :-SAT on < variables.

Let ? > 1. Assuming SETH, for every � > 0, no =2−� time algorithm
can solve:

} BCP in ℓ?-metric when 3 = $(log =) [AW15]

} (1 + �)-approximate BCP in ℓ?-metric when 3 = $(log =) [R18]

} BCP in ℓ?-metric when 3 = 2$(log∗ =) [W18, C18]

13



Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ℓ?-metric for all 3.

CP

BCP
?

Theorem (K-Manurangsi’18)
} BCP and CP in ℓ?-metric are computationally equivalent

when 3 = (log =)Ω(1).

} (1 + �)-approximate BCP can be solved by $̃(
√
=) calls to

(1 + �)-approximate CP in ℓ?-metric when 3 = $(log =).
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Panchromatic Graphs

*1

*2

*:

,
*

Do they exist for small |, |?

Every (D1 , . . . , D:) in*1 × · · ·*:

has C common neighbors in,

Every - ⊂ * (|- | = :) has at most
C − 1 common neighbors in,
if - ∩*8 = ∅ for some 8 ∈ [:]
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Panchromatic Graphs when : = 2
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Bichromatic Closest Pair in {0, 1}3

�

�

[3]

Coordinates
Points

Edge: G ∈ � ∪ � and 8 ∈ [3]
if G8 = 1

Minimizing Distance
m

Maximizing Inner Product
m

Maximizing Common Neighbors

17



Bichromatic Closest Pair in {0, 1}3

�

�

[3]

Coordinates
Points

Edge: G ∈ � ∪ � and 8 ∈ [3]
if G8 = 1

Minimizing Distance
m

Maximizing Inner Product
m

Maximizing Common Neighbors

17



Bichromatic Closest Pair in {0, 1}3

�

�

[3]

Coordinates
Points

Edge: G ∈ � ∪ � and 8 ∈ [3]
if G8 = 1

Minimizing Distance
m

Maximizing Inner Product
m

Maximizing Common Neighbors

17



Panchromatic Graph Composition
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,

3 copies
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Panchromatic Graphs when : = 2 [K-Manurangsi’18]

*1

*2

,

*

Many (D1 , D2) in*1 ×*2

has C common neighbors in,

Every {D, D′} ⊂ *8 has at most
C − 1 common neighbors in,

19



Construction of Panchromatic graphs when : = 2

} *1 := set of degree 3 univariate polynomials over F@

} *2 := {G3+1 + ?(G) | ?(G) ∈ *1}

} , = F@ × F@
} (?, (
, �)) ∈ * ×, is an edge⇔ ?(
) = �

Polynomials are our friends.

. – TCS Folklore
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Panchromatic Graphs when : = 2

*1

*2

F@ × F@
Polynomials

They exist for |, | = polylog(|* |)!

(?, ?′) ∈ *8 have (
, �)
as common neighbor
⇒ 
 is root of ? − ?′

⇒ (?, ?′) ∈ *8 have at most
3 common neighbors

(?, G3+1 + ?′) ∈ *1 ×*2
have 3 + 1 common neighbors
⇔ G3+1 + ?′ − ? has 3 + 1

distinct roots

Number of such polynomials:
( @

3+1
)
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Equivalence of Bichromatic Closest Pair and Closest Pair

Theorem (K-Manurangsi’18)
} BCP and CP in ℓ?-metric are computationally equivalent

when 3 = (log =)Ω(1).

} (1 + �)-approximate BCP can be solved by $̃(
√
=) calls to

(1 + �)-approximate CP in ℓ?-metric when 3 = $(log =).

22



Panchromatic Graphs

*1

*2

*:

,
*

Do they exist for small |, |?

Many (D1 , . . . , D:) in*1 × · · ·*:

has C common neighbors in,

Every - ⊂ * (|- | = :) has at most
C − 1 common neighbors in,
if - ∩*8 = ∅ for some 8 ∈ [:]
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Outline of Talk

} Colored vs. Uncolored Problems

} Closest Pair Problem

} Parameterized Set Intersection Problem

24



Set Intersection

25



:-Set Intersection

Input: (1 , . . . , (= ⊆ [=]
Output: (81 , . . . , (8: whose intersection is maximized

} NPWorld: Ruling out PTAS (assuming NP≠P) is open!

} No poly factor approximation poly time algorithm assuming
"weak-ETH"[Xavier’12]

◦ Relies on Quasi-random PCP of [Khot’06]

} W[1]≠FPT: No �(:) factor approximation )(:)·poly(=) time
algorithm [Lin’15]

} ETH: No �(:) factor approximation =Ω(
√
:) time algorithm

[Lin’15]
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Colored :-Set Intersection

Input: (1
1 , . . . , (

1
= , (

2
1 , . . . , (

2
= , . . . , (

:
1 , . . . , (

:
= ⊆ [=]

Output: (1
81
, . . . , (:

8:
whose intersection is maximized

} NPWorld: Essentially same as Extended Label Cover

} W[1]≠FPT: No �(:) factor approximation )(:)·poly(=) time
algorithm [K-Laekhanukit-Manurangsi’18]

} ETH: No �(:) factor approximation =Ω(:) time algorithm
[K-Laekhanukit-Manurangsi’18]

} SETH: No �(:) factor approximation =:−� time algorithm
[K-Laekhanukit-Manurangsi’18]

} Tight running time lower bounds under W[1]≠FPT, ETH, and
SETH for exact version are straightforward!

27



Colored :-Set Intersection

Input: (1
1 , . . . , (

1
= , (

2
1 , . . . , (

2
= , . . . , (

:
1 , . . . , (

:
= ⊆ [=]

Output: (1
81
, . . . , (:

8:
whose intersection is maximized

} NPWorld: Essentially same as Extended Label Cover

} W[1]≠FPT: No �(:) factor approximation )(:)·poly(=) time
algorithm [K-Laekhanukit-Manurangsi’18]

} ETH: No �(:) factor approximation =Ω(:) time algorithm
[K-Laekhanukit-Manurangsi’18]

} SETH: No �(:) factor approximation =:−� time algorithm
[K-Laekhanukit-Manurangsi’18]

} Tight running time lower bounds under W[1]≠FPT, ETH, and
SETH for exact version are straightforward!

27



Colored :-Set Intersection

Input: (1
1 , . . . , (

1
= , (

2
1 , . . . , (

2
= , . . . , (

:
1 , . . . , (

:
= ⊆ [=]

Output: (1
81
, . . . , (:

8:
whose intersection is maximized

} NPWorld: Essentially same as Extended Label Cover

} W[1]≠FPT: No �(:) factor approximation )(:)·poly(=) time
algorithm [K-Laekhanukit-Manurangsi’18]

} ETH: No �(:) factor approximation =Ω(:) time algorithm
[K-Laekhanukit-Manurangsi’18]

} SETH: No �(:) factor approximation =:−� time algorithm
[K-Laekhanukit-Manurangsi’18]

} Tight running time lower bounds under W[1]≠FPT, ETH, and
SETH for exact version are straightforward!

27



Colored :-Set Intersection

Input: (1
1 , . . . , (

1
= , (

2
1 , . . . , (

2
= , . . . , (

:
1 , . . . , (

:
= ⊆ [=]

Output: (1
81
, . . . , (:

8:
whose intersection is maximized

} NPWorld: Essentially same as Extended Label Cover

} W[1]≠FPT: No �(:) factor approximation )(:)·poly(=) time
algorithm [K-Laekhanukit-Manurangsi’18]

} ETH: No �(:) factor approximation =Ω(:) time algorithm
[K-Laekhanukit-Manurangsi’18]

} SETH: No �(:) factor approximation =:−� time algorithm
[K-Laekhanukit-Manurangsi’18]

} Tight running time lower bounds under W[1]≠FPT, ETH, and
SETH for exact version are straightforward!

27



Colored :-Set Intersection

Input: (1
1 , . . . , (

1
= , (

2
1 , . . . , (

2
= , . . . , (

:
1 , . . . , (

:
= ⊆ [=]

Output: (1
81
, . . . , (:

8:
whose intersection is maximized

} NPWorld: Essentially same as Extended Label Cover

} W[1]≠FPT: No �(:) factor approximation )(:)·poly(=) time
algorithm [K-Laekhanukit-Manurangsi’18]

} ETH: No �(:) factor approximation =Ω(:) time algorithm
[K-Laekhanukit-Manurangsi’18]

} SETH: No �(:) factor approximation =:−� time algorithm
[K-Laekhanukit-Manurangsi’18]

} Tight running time lower bounds under W[1]≠FPT, ETH, and
SETH for exact version are straightforward!

27



Colored :-Set Intersection

Input: (1
1 , . . . , (

1
= , (

2
1 , . . . , (

2
= , . . . , (

:
1 , . . . , (

:
= ⊆ [=]

Output: (1
81
, . . . , (:

8:
whose intersection is maximized

} NPWorld: Essentially same as Extended Label Cover

} W[1]≠FPT: No �(:) factor approximation )(:)·poly(=) time
algorithm [K-Laekhanukit-Manurangsi’18]

} ETH: No �(:) factor approximation =Ω(:) time algorithm
[K-Laekhanukit-Manurangsi’18]

} SETH: No �(:) factor approximation =:−� time algorithm
[K-Laekhanukit-Manurangsi’18]

} Tight running time lower bounds under W[1]≠FPT, ETH, and
SETH for exact version are straightforward!

27



Our Result: Equivalence

Theorem (Bukh-K-Narayanan’21)

} :-Set Intersection and Colored :-Set Intersection are
computationally equivalent up to $:(1) factors in run time.

} 2-approximation of :-Set Intersection is harder than
2/ℎ(:)-approximation of Colored :-Set Intersection.
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Our Technical Result

*1

*2

*:

,
*

They exist for |, |=|* |!

Many (D1 , . . . , D:) in*1 × · · ·*:

has C common neighbors in,

Every - ⊂ * (|- | = :) has at most
C/�(:) common neighbors in,
if - ∩*8 = ∅ for some 8 ∈ [:]
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Set Intersection Lower Bounds

} W[1]≠FPT: No �(:) factor approximation )(:)·poly(=) time
algorithm [Lin’15]

} ETH: No �(:) factor approximation =Ω(:) time algorithm
[Bukh-K-Narayanan’21]

} SETH: No �(:) factor approximation =:−� time algorithm
[Bukh-K-Narayanan’21]
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Colored :-Set Intersection Problem

�1

�2

�:

[=]
C

�8 = {(81 , . . . , (8=}
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Panchromatic Graph Composition

�1

�2

�:

[=]
C

,
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Panchromatic Graph Composition

�1

�2

�:

[=]
C

,
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Panchromatic Graph Composition

�1

�2

�:

[=] ×,
C

Edge between ( 9
8
and (0, F) ⇐⇒ 0 ∈ ( 9

8
and

edge between ( 9
8
and F in Panchromatic Graph
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Construction of Panchromatic graphs

} Pick F1 , . . . , F: random :-variate polynomials over F@ of
degree at most �

} *0
8
is a set of = random :-variate polynomials over F@ of

degree at most 3

} *8 := F8 +*8
0

} , = F :@

} (? + F8 , 
) ∈ * ×, is an edge⇔ 
 is a root of ? + F8
} F8 + ? is uniform on F@[-1 , . . . , -:]≤�

Polynomials are still our friends.

. – TCS Folklore

34



Construction of Panchromatic graphs

} Pick F1 , . . . , F: random :-variate polynomials over F@ of
degree at most �

} *0
8
is a set of = random :-variate polynomials over F@ of

degree at most 3

} *8 := F8 +*8
0

} , = F :@

} (? + F8 , 
) ∈ * ×, is an edge⇔ 
 is a root of ? + F8
} F8 + ? is uniform on F@[-1 , . . . , -:]≤�

Polynomials are still our friends.

. – TCS Folklore

34



Construction of Panchromatic graphs

} Pick F1 , . . . , F: random :-variate polynomials over F@ of
degree at most �

} *0
8
is a set of = random :-variate polynomials over F@ of

degree at most 3

} *8 := F8 +*8
0

} , = F :@

} (? + F8 , 
) ∈ * ×, is an edge⇔ 
 is a root of ? + F8
} F8 + ? is uniform on F@[-1 , . . . , -:]≤�

Polynomials are still our friends.

. – TCS Folklore

34



Construction of Panchromatic graphs

} Pick F1 , . . . , F: random :-variate polynomials over F@ of
degree at most �

} *0
8
is a set of = random :-variate polynomials over F@ of

degree at most 3

} *8 := F8 +*8
0

} , = F :@

} (? + F8 , 
) ∈ * ×, is an edge⇔ 
 is a root of ? + F8
} F8 + ? is uniform on F@[-1 , . . . , -:]≤�

Polynomials are still our friends.

. – TCS Folklore

34



Construction of Panchromatic graphs

} Pick F1 , . . . , F: random :-variate polynomials over F@ of
degree at most �

} *0
8
is a set of = random :-variate polynomials over F@ of

degree at most 3

} *8 := F8 +*8
0

} , = F :@

} (? + F8 , 
) ∈ * ×, is an edge⇔ 
 is a root of ? + F8

} F8 + ? is uniform on F@[-1 , . . . , -:]≤�

Polynomials are still our friends.

. – TCS Folklore

34



Construction of Panchromatic graphs

} Pick F1 , . . . , F: random :-variate polynomials over F@ of
degree at most �

} *0
8
is a set of = random :-variate polynomials over F@ of

degree at most 3

} *8 := F8 +*8
0

} , = F :@

} (? + F8 , 
) ∈ * ×, is an edge⇔ 
 is a root of ? + F8
} F8 + ? is uniform on F@[-1 , . . . , -:]≤�

Polynomials are still our friends.

. – TCS Folklore

34



Technical Result

Theorem (Bukh-K-Narayanan’21)
For :, 3 ∈ ℕ and a prime power @ ∈ ℕ, let / be the (random)
number of common roots over F :@ of : independently chosen
:-variate random F@-polynomials of degree 3. Then, as
@ →∞, we have

Pr[/=3:] ≥ 1 − >(1)
(3:)!

,

as well as
Pr[/>3:] = $(@−3).
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Analysis of Construction

Fix ( = {F8 + ?8 ∈ *8 |8 ∈ [:]}

} |#(()| is distributed as the number of F@-solutions of : random
polynomials from F@[-1 , , . . . , -:]≤�

} Pr[|#(()|>�:] = $(@−�)
◦ By parameter choice, number of such sets < 1/@

} Pr[|#(()|=�:] = (2(�:)!)−1

Fix ( ⊆ *, |( | = : and ( ∩*1 = ∅.

} |#(()| is distributed as the number of F@-solutions of : random
polynomials from F@[-1 , , . . . , -:]≤� or F@[-1 , , . . . , -:]≤3

} Pr[|#(()|>3�:−1] = $(@−3)
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polynomials from F@[-1 , , . . . , -:]≤� or F@[-1 , , . . . , -:]≤3

} Pr[|#(()|>3�:−1] = $(@−3)
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Our Technical Result

*1

*2

*:

F :@
Polynomials

They exist for |, |=|* |!

Many (D1 , . . . , D:) in*1 × · · ·*:

has C common neighbors in,

Every - ⊂ * (|- | = :) has at most
C/�(:) common neighbors in,
if - ∩*8 = ∅ for some 8 ∈ [:]

37



Set Intersection Lower Bounds

} W[1]≠FPT: No �(:) factor approximation )(:)·poly(=) time
algorithm [Lin’15]

New Proof!

} ETH: No �(:) factor approximation =Ω(:) time algorithm
[Bukh-K-Narayanan’21]

} SETH: No �(:) factor approximation =:−� time algorithm
[Bukh-K-Narayanan’21]
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Starting from :-Clique

�
+ = [=] Input: �([=], �)

If � has a :-clique then
there are

(
:
2
)
vertices in �

which in total have : neighbors

If � has no :-clique then
any

(
:
2
)
vertices in �

has totally at least : + 1 neigh-
bors
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Threshold Graph

� = [=]
+ = [=]

Every : vertices in + has at least
=Ω(1/:) common neighbors in �

Every : + 1 vertices in + has at most
:$(:) common neighbors in �
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Threshold Graph Composition

�� = [=]
+ = [=]

(4 , 0) ∈ � × � is an edge⇔∃ E, E′ ∈ + such that
0 and 4 are common neighbors of E and E′

41



Threshold Graph Composition

�� = [=]
+ = [=]

(4 , 0) ∈ � × � is an edge⇔∃ E, E′ ∈ + such that
0 and 4 are common neighbors of E and E′ 41



Completeness of Reduction

} Let E1 , . . . , E: ∈ + be vertices of :-clique in �

} Let �′ ⊆ � be common neighbors of E1 , . . . , E: in Threshold
graph

} Every 0 ∈ �′ is also a common neighbor of 4E8 ,E 9 ∈ �

Completeness of Threshold Graph

Every : vertices in + has at least
=Ω(1/:) common neighbors in �
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Soundness of Reduction

} Fix (41 , . . . , 4(:2)) ∈ � and let �′ ⊆ � be its set of common
neighbors

} Let +′ ⊆ + be set of total neighbors of (41 , . . . , 4(:2)) in +

} |+′ | ≥ : + 1

} �′ is a subset of the common neighbors of +′ in Threshold graph

Soundness of Threshold Graph

Every : + 1 vertices in + has at most
:$(:) common neighbors in �
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Outline of Talk

} Colored vs. Uncolored Problems

} Closest Pair Problem

} Parameterized Set Intersection Problem
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Key Takeaways

} Panchromatic Graphs Exist!

} Tight Running Time Lower Bounds for Approximating
Parameterized Set Intersection

} Can we find explicit Panchromatic Graphs?

} Are there more applications for these graphs?
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THANK
YOU!
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