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Uncolored k-Clique Problem and Colored k-Clique Problem are
computationally equivalent up to Ok(1) factor
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Fair Clustering

Uncolored Clustering Problem:

Input: P C R, k € N

Output: PyUP,U - - - UPy := P minimizing some clustering objective

Colo ed Clustering Problem:

Input: P C R, keN,c:P —|[r]
Output: PyUP,U - - - UPy := P minimizing some clustering objective
such that each P; is well-colored by ¢

Is Clustering under Fairness constraints computationally
harder than Standard Clustering?
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Uncolored Closest Pair Problem:

Input: P C R4

Output: a,b € P minimizing ||la - b||,

Colo ed Closest Pair Problem:

Input: A,B C R4
Output: (a,b) € A X B minimizing ||a — b||,

Is Colored Closest Pair computationally harder
than Uncolored Closest Pair?
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Uncolored k-Set Intersection Problem:

Input: Sy,...,S, € [n]

Output: S;, ..., S;, whose intersection is maximized

Colo ed k-Set Intersection Problem:

Input: S},...,SL,82,...,8%,...,8F, ..., Sk C[n]

n =

Output: Sill, ..., S ;‘k whose intersection is maximized

Is Colored k-Set Intersection problem computationally
harder than Uncolored k-Set Intersection problem?
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Using Color Coding we can reduce Uncolored version
to Colored version

Can we reduce Colored version to Uncolored version?
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Closest Pair

© Closest Pair problem (CP) in £,-metric
Input: A C R%, |A|l =n
Output: a*,b* € A, min |la — b,
a,beA
a#b
® Trivial algorithm: O(n%d)
Bently-Shamos’76: 20y log n (for ¢,-metric)
Subcubic algorithms when d = O(n) [ILLPos, MKZog, GS17]

© What happens when d =~ polylog n?
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Bichromatic Closest Pair

© Bichromatic Closest Pair problem (BCP) in {, metric
Input: A,BC RY, |A|=|B|=n
Output: a* € A,b* € B, min ||a - b||,
be

© Trivial algorithm: O(n%d)

© Computationally equivalent to determining Minimum
Spanning Tree in £,-metric [AESW91, KLNg9]

© What happens when d = polylog n?
What happens when d = @(1)?
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Strong Exponential Time Hypothesis (SETH)

For every ¢ > 0, no algorithm running in 2m(1-¢) ime
can solve k-SAT on m variables.

Letp > 1. Assuming SETH, for every ¢ > 0, no n% "¢ time algorithm
can solve:

© BCP in {,-metric when d = w(logn) [AW15]
© (1 + 0)-approximate BCP in {,-metric when d = w(logn) [R18]

® BCP in ¢,-metric when d = 200%8"") [W18, C18]
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Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every {,-metric for all d.

Theorem (K-Manurangsi’18)

© BCP and CP in {,-metric are computationally equivalent
when d = (log 1)1,

® (1 + d)-approximate BCP can be solved by O(+/1) calls to
(1 + 6)-approximate CP in {,-metric when d = w(log n).
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Construction of Panchromatic graphs when k = 2

© Uy := set of degree d univariate polynomials over [F,
© Uy := {x™ +p(x) | p(x) € Uy}

© W=FxF,

© (p,(a,B)) e UxWisanedge & p(a) =

20
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Panchromatic Graphs when k = 2

. (p,p’) € U; have (a, p)
Polynomials .
as common neighbor
= aisrootof p —p’
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have d + 1 common neighbors
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Panchromatic Graphs when k = 2

. (p/ p/) € ui have (CY, :8)
Polynomials .
as common neighbor
= aisrootof p —p’
= (p, p’) € U; have at most

d common neighbors

(p,xT+p) el xUy
have d + 1 common neighbors
e x™ +p' —phasd +1
distinct roots

Number of such polynomials: (,7,)

They exist for |W| = polylog(|U]|)!
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Equivalence of Bichromatic Closest Pair and Closest Pair

Theorem (K-Manurangsi’18)

© BCP and CP in {,-metric are computationally equivalent
when d = (log n)2),

© (1 + 0)-approximate BCP can be solved by O(+n) calls to
(1 + 6)-approximate CP in {,-metric when d = w(logn).
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"weak-ETH"[Xavier'12]

o Relies on Quasi-random PCP of [Khot'06]

© WI1]#FPT: No F(k) factor approximation T (k)-poly(n) time
algorithm [Lin"15]

© ETH: No F(k) factor approximation n200 time algorithm
[Lin"15]
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Colored k-Set Intersection

Input: S1,...,SL,82,...,8%,...,SK, ..., Sk C[n]
Output: 51‘11’ ..., S lkk whose intersection is maximized

© NP World: Essentially same as Extended Label Cover

© WI1]#FPT: No F(k) factor approximation T (k)-poly(n) time
algorithm [K-Laekhanukit-Manurangsi’18]

© ETH: No F(k) factor approximation n*¥) time algorithm
[K-Laekhanukit-Manurangsi’18]

©® SETH: No F(k) factor approximation 7*~¢ time algorithm
[K-Laekhanukit-Manurangsi’18]

© Tight running time lower bounds under W[1]#FPT, ETH, and
SETH for exact version are straightforward!
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Our Result: Equivalence

Theorem (Bukh-K-Narayanan’21)

© k-Set Intersection and Colo ed k-Set Intersection are
computationally equivalent up to Ok(1) factors in run time.

© c-approximation of k-Set Intersection is harder than
c/h(k)-approximation of Colo ed k-Set Intersection.
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Set Intersection Lower Bounds

© W[1]#FPT: No F(k) factor approximation T'(k)-poly(r) time
algorithm [Lin’15]

@ ETH: No F(k) factor approximation n**) time algorithm
[Bukh-K-Narayanan'21]

© SETH: No F(k) factor approximation n*~¢ time algorithm
[Bukh-K-Narayanan’'21]
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Construction of Panchromatic graphs

Polynomials are still our friends.

— TCS Folklore
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degree at most d
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Construction of Panchromatic graphs

© Pick wy, ..., wy random k-variate polynomials over [; of
degree at most D

© U is a set of n random k-variate polynomials over F; of
degree at most d

© ui1=wl‘+u,'0
© W=Ff

© (p+w;,a) € UxW isanedge & aisarootof p + w;
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Construction of Panchromatic graphs

© Pick wy, ..., wy random k-variate polynomials over [; of
degree at most D
© U is a set of n random k-variate polynomials over F; of
degree at most d
U, .=w; + u,'O
— [k
W =F,

(p+w;,a) e UxW isanedge & ais arootof p + w;

© © © 0

w; + p is uniform on F;[ X1, ..., Xi]<p
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Technical Result

Theorem (Bukh-K-Narayanan’21)

For k,d € N and a prime power g € N, let Z be the (random)
number of common roots over [F,;‘ of k independently chosen
k-variate random [F;-polynomials of degree d. Then, as

g — oo, we have
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Technical Result

Theorem (Bukh-K-Narayanan’21)
For k,d € N and a prime power g € N, let Z be the (random)
number of common roots over [F,;‘ of k independently chosen

k-variate random [F;-polynomials of degree d. Then, as
g — oo, we have

1-0(1)

Pr[Z=d"] > @

as well as
Pr[Z>d*] = O(q77).
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Analysis of Construction

Fix S = {w; + p; € U;|i € [k]}
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Analysis of Construction

Fix S = {w; + p; € U;|i € [k]}

© |N(S)|is distributed as the number of F;-solutions of k random
polynomials from F,[X1,, ..., Xkl<p

® Pr[IN(S)|>D¥] = O(qP)

o By parameter choice, number of such sets < 1/g

® Pr[|N(S)|=D*] = (2(D*))~1

FixScU,|S|=kand SNU; = 0.

© |N(S)|is distributed as the number of [;-solutions of k random
polynomials from F,[X1,, ..., Xk]<p or Fy[X1,, ..., Xk]<a
© Pr[|N(S)|>dD* '] = O(q47%)
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Our Technical Result

Polynomials

Many (u1, ..., ux) in Uy X - - - Uy

has f common neighbors in W

Every X c U (|X| = k) has at most
t/F(k) common neighbors in W

if X NU; = 0 for some i € [k]

They exist for |W|=|U]|!
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Set Intersection Lower Bounds

© W[1]#FPT: No F(k) factor approximation T'(k)-poly(r) time
algorithm [Lin’15]

© ETH: No F(k) factor approximation 7 time algorithm
[Bukh-K-Narayanan'21]

© SETH: No F(k) factor approximation 7*~¢ time algorithm
[Bukh-K-Narayanan’'21]
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Set Intersection Lower Bounds

© W[1]#FPT: No F(k) factor approximation T'(k)-poly(r) time
algorithm [Lin"15] New Proof!

© ETH: No F(k) factor approximation 7 time algorithm
[Bukh-K-Narayanan'21]

© SETH: No F(k) factor approximation 7*~¢ time algorithm
[Bukh-K-Narayanan’'21]
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Starting from k-Clique

Input: G([n],E)
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Starting from k-Clique

Input: G([n],E)
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Starting from k-Clique

Input: G([n],E)

If G has a k-clique then
there are (g) vertices in E

which in total have k neighbors

If G has no k-clique then

any (%) vertices in E

has totally at least k + 1 neigh-
bors
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Threshold Graph

Every k vertices in V has at least
n¥1/K) common neighbors in A
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Completeness of Reduction

© Letwvy,...,vr € V be vertices of k-clique in G

© Let A’ € A be common neighbors of vy, ..., vy in Threshold
graph
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Completeness of Reduction

© Letwvy,...,vr € V be vertices of k-clique in G

© Let A’ € A be common neighbors of vy, ..., vy in Threshold
graph

© Every a € A’ is also a common neighbor of ey, o, € E

Completeness of Threshold Graph

Every k vertices in V has at least
n1/k) common neighbors in A
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Soundness of Reduction

©® Fix (e, ..., e(k)) € E and let A’ C A be its set of common
2
neighbors
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Soundness of Reduction

©® Fix (e, ..., e(g)) € E and let A’ C A be its set of common
neighbors

© Let V’ C V be set of total neighbors of (e, .. ., e(g)) inV
© |V|>2k+1

© A’is a subset of the common neighbors of V” in Threshold graph

Soundness of Threshold Graph

Every k + 1 vertices in V has at most
kO® common neighbors in A
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Threshold Graph

Every k vertices in V has at least
n¥1/K) common neighbors in A

Every k + 1 vertices in V has at most

k") common neighbors in A
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Threshold Graph
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Outline of Talk

© Colo ed vs. Uncolored Problems v~
© Closest Pair Problem v

© Parameterized Set Intersection Problem v
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© Panchromatic Graphs Exist!
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CYRELCEWETE

© Panchromatic Graphs Exist!

© Tight Running Time Lower Bounds for Approximating
Parameterized Set Intersection

© Can we find explicit Panchromatic Graphs?

© Are there more applications for these graphs?
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