Reversing Color Coding

Karthik C. S.
 (Rutgers University)

Joint work with

Boris Bukh
(Carnegie Mellon University)

Bhargav Narayanan
(Rutgers University)

Outline of Talk

© Colored vs. Uncolored Problems

Outline of Talk

© Colored vs. Uncolored Problems
© Closest Pair Problem

Outline of Talk

© Colored vs. Uncolored Problems
© Closest Pair Problem
© Parameterized Set Intersection Problem

Colored versus
 Uncolored

k-Clique

Uncolored k-Clique Problem:
Input: $G(V, E)$
Output: k-clique in G

k-Clique

Uncolored k-Clique Problem:
Input: $G(V, E)$
Output: k-clique in G

Colored k-Clique Problem:
Input: $G\left(V_{1} \dot{U} V_{2} \dot{U} \cdots \dot{U} V_{k}, E\right)$
Output: k-clique in G from $V_{1} \times V_{2} \times \cdots \times V_{k}$

k-Clique

Uncolored k-Clique Problem:
Input: $G(V, E)$
Output: k-clique in G
Colored k-Clique Problem:
Input: $G\left(V_{1} \cup V_{2} \cup \dot{U} \cdots \dot{U} V_{k}, E\right)$
Output: k-clique in G from $V_{1} \times V_{2} \times \cdots \times V_{k}$

Uncolored k-Clique Problem and Colored k-Clique Problem are computationally equivalent up to $O_{k}(1)$ factor

k-Set Cover

Uncolored k-Set Cover Problem:
Input: $S_{1}, \ldots, S_{n} \subseteq[n]$
Output: $S_{i_{1}}, \ldots, S_{i_{k}}$ whose union is [n]

k-Set Cover

Uncolored k-Set Cover Problem:
Input: $S_{1}, \ldots, S_{n} \subseteq[n]$
Output: $S_{i_{1}}, \ldots, S_{i_{k}}$ whose union is [n]

Colored k-Set Cover Problem:

Input: $S_{1}^{1}, \ldots, S_{n}^{1}, S_{1}^{2}, \ldots, S_{n}^{2}, \ldots, S_{1}^{k}, \ldots, S_{n}^{k} \subseteq[n]$
Output: $S_{i_{1}}^{1}, \ldots, S_{i_{k}}^{k}$ whose union is [n]

k-Set Cover

Uncolored k-Set Cover Problem:
Input: $S_{1}, \ldots, S_{n} \subseteq[n]$
Output: $S_{i_{1}}, \ldots, S_{i_{k}}$ whose union is [n]

Colored k-Set Cover Problem:
Input: $S_{1}^{1}, \ldots, S_{n}^{1}, S_{1}^{2}, \ldots, S_{n}^{2}, \ldots, S_{1}^{k}, \ldots, S_{n}^{k} \subseteq[n]$
Output: $S_{i_{1}}^{1}, \ldots, S_{i_{k}}^{k}$ whose union is [n]

Uncolored and Colored k-Set Cover Problems are computationally equivalent up to $O_{k}(1)$ factor

Fair Clustering

Uncolored Clustering Problem:
Input: $P \subseteq \mathbb{R}^{d}, k \in \mathbb{N}$
Output: $P_{1} \dot{\cup} P_{2} \dot{U} \cdots \dot{U} P_{k}:=P$ minimizing some clustering objective

Fair Clustering

Uncolored Clustering Problem:
Input: $P \subseteq \mathbb{R}^{d}, k \in \mathbb{N}$
Output: $P_{1} \dot{\cup} P_{2} \dot{U} \cdots \dot{U} P_{k}:=P$ minimizing some clustering objective

Colored Clustering Problem:
Input: $P \subseteq \mathbb{R}^{d}, k \in \mathbb{N}, c: P \rightarrow[r]$
Output: $P_{1} \dot{\cup} P_{2} \dot{U} \cdots \dot{U} P_{k}:=P$ minimizing some clustering objective such that each P_{i} is well-colored by c

Fair Clustering

Uncolored Clustering Problem:
Input: $P \subseteq \mathbb{R}^{d}, k \in \mathbb{N}$
Output: $P_{1} \dot{\cup} P_{2} \dot{U} \cdots \dot{U} P_{k}:=P$ minimizing some clustering objective

Colored Clustering Problem:
Input: $P \subseteq \mathbb{R}^{d}, k \in \mathbb{N}, c: P \rightarrow[r]$
Output: $P_{1} \dot{\cup} P_{2} \dot{U} \cdots \dot{U} P_{k}:=P$ minimizing some clustering objective such that each P_{i} is well-colored by c

Is Clustering under Fairness constraints computationally harder than Standard Clustering?

Closest Pair

Uncolored Closest Pair Problem:

Input: $P \subseteq \mathbb{R}^{d}$
Output: $a, b \in P$ minimizing $\|a-b\|_{p}$

Closest Pair

Uncolored Closest Pair Problem:

Input: $P \subseteq \mathbb{R}^{d}$
Output: $a, b \in P$ minimizing $\|a-b\|_{p}$
Colored Closest Pair Problem:
Input: $A, B \subseteq \mathbb{R}^{d}$
Output: $(a, b) \in A \times B$ minimizing $\|a-b\|_{p}$

Closest Pair

Uncolored Closest Pair Problem:

Input: $P \subseteq \mathbb{R}^{d}$
Output: $a, b \in P$ minimizing $\|a-b\|_{p}$

Colored Closest Pair Problem:
Input: $A, B \subseteq \mathbb{R}^{d}$
Output: $(a, b) \in A \times B$ minimizing $\|a-b\|_{p}$

Is Colored Closest Pair computationally harder than Uncolored Closest Pair?

Set Intersection

Uncolored k-Set Intersection Problem:
Input: $S_{1}, \ldots, S_{n} \subseteq[n]$
Output: $S_{i_{1}}, \ldots, S_{i_{k}}$ whose intersection is maximized

Set Intersection

Uncolored k-Set Intersection Problem:
Input: $S_{1}, \ldots, S_{n} \subseteq[n]$
Output: $S_{i_{1}}, \ldots, S_{i_{k}}$ whose intersection is maximized
Colored k-Set Intersection Problem:
Input: $S_{1}^{1}, \ldots, S_{n}^{1}, S_{1}^{2}, \ldots, S_{n}^{2}, \ldots, S_{1}^{k}, \ldots, S_{n}^{k} \subseteq[n]$
Output: $S_{i_{1}}^{1} \ldots, S_{i_{k}}^{k}$ whose intersection is maximized

Set Intersection

Uncolored k-Set Intersection Problem:
Input: $S_{1}, \ldots, S_{n} \subseteq[n]$
Output: $S_{i_{1}}, \ldots, S_{i_{k}}$ whose intersection is maximized
Colored k-Set Intersection Problem:
Input: $S_{1}^{1}, \ldots, S_{n}^{1}, S_{1}^{2}, \ldots, S_{n}^{2}, \ldots, S_{1}^{k}, \ldots, S_{n}^{k} \subseteq[n]$
Output: $S_{i_{1}}^{1} \ldots, S_{i_{k}}^{k}$ whose intersection is maximized

Is Colored k-Set Intersection problem computationally harder than Uncolored k-Set Intersection problem?

Big Question

Using Color Coding we can reduce Uncolored version to Colored version

Big Question

Using Color Coding we can reduce Uncolored version to Colored version

Can we reduce Colored version to Uncolored version?

Outline of Talk

© Colored vs. Uncolored Problems
© Closest Pair Problem
© Parameterized Set Intersection Problem

Closest Pair

Closest Pair

© Closest Pair problem (CP) in ℓ_{p}-metric

Closest Pair

© Closest Pair problem (CP) in ℓ_{p}-metric
Input: $A \subset \mathbb{R}^{d},|A|=n$

Closest Pair

© Closest Pair problem (CP) in ℓ_{p}-metric
Input: $A \subset \mathbb{R}^{d},|A|=n$
Output: $a^{*}, b^{*} \in A, \min _{\substack{a, b \in A \\ a \neq b}}\|a-b\|_{p}$
© Closest Pair problem (CP) in ℓ_{p}-metric
Input: $A \subset \mathbb{R}^{d},|A|=n$
Output: $a^{*}, b^{*} \in A, \min _{\substack{a, b \in A \\ a \neq b}}\|a-b\|_{p}$
© Trivial algorithm: $O\left(n^{2} d\right)$

Closest Pair

© Closest Pair problem (CP) in ℓ_{p}-metric
Input: $A \subset \mathbb{R}^{d},|A|=n$
Output: $a^{*}, b^{*} \in A, \min _{\substack{a, b \in A \\ a \neq b}}\|a-b\|_{p}$
© Trivial algorithm: $O\left(n^{2} d\right)$
Bently-Shamos'76: $2^{O(d)} n \log n$ (for ℓ_{2}-metric)

Closest Pair

© Closest Pair problem (CP) in ℓ_{p}-metric
Input: $A \subset \mathbb{R}^{d},|A|=n$
Output: $a^{*}, b^{*} \in A, \min _{\substack{a, b \in A \\ a \neq b}}\|a-b\|_{p}$
© Trivial algorithm: $O\left(n^{2} d\right)$
Bently-Shamos'76: $2^{O(d)} n \log n$ (for ℓ_{2}-metric)
Subcubic algorithms when $d=O(n)$ [ILLPo4, MKZog, GS17]

Closest Pair

© Closest Pair problem (CP) in ℓ_{p}-metric
Input: $A \subset \mathbb{R}^{d},|A|=n$
Output: $a^{*}, b^{*} \in A, \min _{\substack{a, b \in A \\ a \neq b}}\|a-b\|_{p}$
© Trivial algorithm: $O\left(n^{2} d\right)$
Bently-Shamos'76: $2^{O(d)} n \log n$ (for ℓ_{2}-metric)
Subcubic algorithms when $d=O(n)$ [ILLPo4, MKZog, GS17]
(0) What happens when $d \approx$ polylog n ?

Bichromatic Closest Pair

© Bichromatic Closest Pair problem (BCP) in ℓ_{p} metric

Bichromatic Closest Pair

© Bichromatic Closest Pair problem (BCP) in ℓ_{p} metric Input: $A, B \subset \mathbb{R}^{d},|A|=|B|=n$

Bichromatic Closest Pair

© Bichromatic Closest Pair problem (BCP) in ℓ_{p} metric Input: $A, B \subset \mathbb{R}^{d},|A|=|B|=n$
Output: $a^{*} \in A, b^{*} \in B, \min _{\substack{a \in A \\ b \in B}}\|a-b\|_{p}$

Bichromatic Closest Pair

© Bichromatic Closest Pair problem (BCP) in ℓ_{p} metric Input: $A, B \subset \mathbb{R}^{d},|A|=|B|=n$
Output: $a^{*} \in A, b^{*} \in B, \min _{\substack{a \in A \\ b \in B}}\|a-b\|_{p}$
© Trivial algorithm: $O\left(n^{2} d\right)$

Bichromatic Closest Pair

© Bichromatic Closest Pair problem (BCP) in ℓ_{p} metric Input: $A, B \subset \mathbb{R}^{d},|A|=|B|=n$
Output: $a^{*} \in A, b^{*} \in B, \min _{\substack{a \in A \\ b \in B}}\|a-b\|_{p}$
© Trivial algorithm: $O\left(n^{2} d\right)$
© Computationally equivalent to determining Minimum Spanning Tree in ℓ_{p}-metric [AESW91, KLN99]

Bichromatic Closest Pair

© Bichromatic Closest Pair problem (BCP) in ℓ_{p} metric Input: $A, B \subset \mathbb{R}^{d},|A|=|B|=n$
Output: $a^{*} \in A, b^{*} \in B, \min _{\substack{a \in A \\ b \in B}}\|a-b\|_{p}$
© Trivial algorithm: $O\left(n^{2} d\right)$
© Computationally equivalent to determining Minimum Spanning Tree in ℓ_{p}-metric [AESW91, KLN99]
© What happens when $d \approx$ polylog n ?

Bichromatic Closest Pair

© Bichromatic Closest Pair problem (BCP) in ℓ_{p} metric Input: $A, B \subset \mathbb{R}^{d},|A|=|B|=n$
Output: $a^{*} \in A, b^{*} \in B, \min _{\substack{a \in A \\ b \in B}}\|a-b\|_{p}$
© Trivial algorithm: $O\left(n^{2} d\right)$
© Computationally equivalent to determining Minimum Spanning Tree in ℓ_{p}-metric [AESW91, KLN99]
(0) What happens when $d \approx$ polylog n ?

What happens when $d=\omega(1)$?

Bichromatic Closest Pair under Fine-Grained Lens

Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon>0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.

Bichromatic Closest Pair under Fine-Grained Lens

Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon>0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.

Let $p \geqslant 1$. Assuming SETH, for every $\varepsilon>0$, no $n^{2-\varepsilon}$ time algorithm can solve:

Bichromatic Closest Pair under Fine-Grained Lens

Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon>0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.

Let $p \geqslant 1$. Assuming SETH, for every $\varepsilon>0$, no $n^{2-\varepsilon}$ time algorithm can solve:
© BCP in ℓ_{p}-metric when $d=\omega(\log n)$ [AW15]

Bichromatic Closest Pair under Fine-Grained Lens

Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon>0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.

Let $p \geqslant 1$. Assuming SETH, for every $\varepsilon>0$, no $n^{2-\varepsilon}$ time algorithm can solve:
© BCP in ℓ_{p}-metric when $d=\omega(\log n)$ [AW15]
© $(1+\delta)$-approximate BCP in ℓ_{p}-metric when $d=\omega(\log n)\left[\mathrm{R}_{1} 8\right]$

Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon>0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.

Let $p \geqslant 1$. Assuming SETH, for every $\varepsilon>0$, no $n^{2-\varepsilon}$ time algorithm can solve:
© BCP in ℓ_{p}-metric when $d=\omega(\log n)$ [AW15]
© $(1+\delta)$-approximate BCP in ℓ_{p}-metric when $d=\omega(\log n)\left[\mathrm{R}_{1} 8\right]$
(0 BCP in ℓ_{p}-metric when $d=2^{O\left(\log ^{*} n\right)}\left[\mathrm{W}_{18}, \mathrm{C}_{1} 8\right]$

Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ℓ_{p}-metric for all d.

Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ℓ_{p}-metric for all d.

Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ℓ_{p}-metric for all d.

Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ℓ_{p}-metric for all d.

Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ℓ_{p}-metric for all d.

BCP is at least as hard as CP in every ℓ_{p}-metric for all d.

BCP is at least as hard as CP in every ℓ_{p}-metric for all d.

BCP is at least as hard as CP in every ℓ_{p}-metric for all d.

Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ℓ_{p}-metric for all d.

Theorem (K-Manurangsi'18)

© BCP and CP in ℓ_{p}-metric are computationally equivalent when $d=(\log n)^{\Omega(1)}$.
© $(1+\delta)$-approximate BCP can be solved by $\tilde{O}(\sqrt{n})$ calls to $(1+\delta)$-approximate CP in ℓ_{p}-metric when $d=\omega(\log n)$.

Panchromatic Graphs

Panchromatic Graphs

Every $\left(u_{1}, \ldots, u_{k}\right)$ in $U_{1} \times \cdots U_{k}$ has t common neighbors in W

Panchromatic Graphs

Every $\left(u_{1}, \ldots, u_{k}\right)$ in $U_{1} \times \cdots U_{k}$ has t common neighbors in W

Every $X \subset U(|X|=k)$ has at most $t-1$ common neighbors in W if $X \cap U_{i}=\emptyset$ for some $i \in[k]$

Panchromatic Graphs

Every $\left(u_{1}, \ldots, u_{k}\right)$ in $U_{1} \times \cdots U_{k}$ has t common neighbors in W

Every $X \subset U(|X|=k)$ has at most $t-1$ common neighbors in W if $X \cap U_{i}=\emptyset$ for some $i \in[k]$

Do they exist for small $|W|$?

Panchromatic Graphs when $k=2$

Panchromatic Graphs when $k=2$

Every $\left(u_{1}, u_{2}\right)$ in $U_{1} \times U_{2}$
has t common neighbors in W

Panchromatic Graphs when $k=2$

Every $\left(u_{1}, u_{2}\right)$ in $U_{1} \times U_{2}$
has t common neighbors in W

Every $\left\{u, u^{\prime}\right\} \subset U_{i}$ has at most $t-1$ common neighbors in W

Panchromatic Graphs when $k=2$

Every $\left(u_{1}, u_{2}\right)$ in $U_{1} \times U_{2}$ has t common neighbors in W

Every $\left\{u, u^{\prime}\right\} \subset U_{i}$ has at most $t-1$ common neighbors in W

Do they exist for small $|W|$?

Bichromatic Closest Pair in $\{0,1\}^{d}$

Points

Bichromatic Closest Pair in $\{0,1\}^{d}$

Points

Edge: $x \in A \cup B$ and $i \in[d]$

$$
\text { if } x_{i}=1
$$

Bichromatic Closest Pair in $\{0,1\}^{d}$

Points

Edge: $x \in A \cup B$ and $i \in[d]$

$$
\text { if } x_{i}=1
$$

Minimizing Distance

I

Maximizing Inner Product ॥
Maximizing Common Neighbors

Panchromatic Graph Composition

Points

Panchromatic Graph Composition

Points

Panchromatic Graphs when $k=2$ [K-Manurangsi'18]

Many $\left(u_{1}, u_{2}\right)$ in $U_{1} \times U_{2}$
has t common neighbors in W

Every $\left\{u, u^{\prime}\right\} \subset U_{i}$ has at most $t-1$ common neighbors in W

Construction of Panchromatic graphs when $k=2$

> Polynomials are our friends. $$
- \text { TCS Folklore }
$$

Construction of Panchromatic graphs when $k=2$

© $U_{1}:=$ set of degree d univariate polynomials over \mathbb{F}_{q}

Construction of Panchromatic graphs when $k=2$

© U_{1} := set of degree d univariate polynomials over \mathbb{F}_{q}
© $U_{2}:=\left\{x^{d+1}+p(x) \mid p(x) \in U_{1}\right\}$

Construction of Panchromatic graphs when $k=2$

© $U_{1}:=$ set of degree d univariate polynomials over \mathbb{F}_{q}
© $U_{2}:=\left\{x^{d+1}+p(x) \mid p(x) \in U_{1}\right\}$
© $W=\mathbb{F}_{q} \times \mathbb{F}_{q}$

Construction of Panchromatic graphs when $k=2$

© $U_{1}:=$ set of degree d univariate polynomials over \mathbb{F}_{q}
(०) $U_{2}:=\left\{x^{d+1}+p(x) \mid p(x) \in U_{1}\right\}$
© $W=\mathbb{F}_{q} \times \mathbb{F}_{q}$
© $(p,(\alpha, \beta)) \in U \times W$ is an edge $\Leftrightarrow p(\alpha)=\beta$

Panchromatic Graphs when $k=2$

Polynomials

Panchromatic Graphs when $k=2$

Polynomials

$\left(p, p^{\prime}\right) \in U_{i}$ have (α, β) as common neighbor
$\Rightarrow \alpha$ is root of $p-p^{\prime}$
$\Rightarrow\left(p, p^{\prime}\right) \in U_{i}$ have at most d common neighbors

Panchromatic Graphs when $k=2$

Polynomials

$\left(p, p^{\prime}\right) \in U_{i}$ have (α, β) as common neighbor
$\Rightarrow \alpha$ is root of $p-p^{\prime}$
$\Rightarrow\left(p, p^{\prime}\right) \in U_{i}$ have at most
d common neighbors
$\left(p, x^{d+1}+p^{\prime}\right) \in U_{1} \times U_{2}$
have $d+1$ common neighbors

$$
\begin{gathered}
\Leftrightarrow x^{d+1}+p^{\prime}-p \text { has } d+1 \\
\text { distinct roots }
\end{gathered}
$$

Number of such polynomials: $\binom{q}{d+1}$

Panchromatic Graphs when $k=2$

Polynomials

$$
\left(p, p^{\prime}\right) \in U_{i} \text { have }(\alpha, \beta)
$$ as common neighbor

$\Rightarrow \alpha$ is root of $p-p^{\prime}$
$\Rightarrow\left(p, p^{\prime}\right) \in U_{i}$ have at most d common neighbors

$$
\left(p, x^{d+1}+p^{\prime}\right) \in U_{1} \times U_{2}
$$

have $d+1$ common neighbors

$$
\begin{gathered}
\Leftrightarrow x^{d+1}+p^{\prime}-p \text { has } d+1 \\
\text { distinct roots }
\end{gathered}
$$

Number of such polynomials: $\binom{9}{d+1}$

They exist for $|W|=\operatorname{polylog}(|U|)!$

Equivalence of Bichromatic Closest Pair and Closest Pair

Theorem (K-Manurangsi' 18)

© BCP and CP in ℓ_{p}-metric are computationally equivalent when $d=(\log n)^{\Omega(1)}$.
© $(1+\delta)$-approximate BCP can be solved by $\tilde{O}(\sqrt{n})$ calls to $(1+\delta)$-approximate CP in ℓ_{p}-metric when $d=\omega(\log n)$.

Panchromatic Graphs

Many $\left(u_{1}, \ldots, u_{k}\right)$ in $U_{1} \times \cdots U_{k}$ has t common neighbors in W

Every $X \subset U(|X|=k)$ has at most $t-1$ common neighbors in W if $X \cap U_{i}=\emptyset$ for some $i \in[k]$

Do they exist for small $|W|$?

Outline of Talk

© Colored vs. Uncolored Problems
© Closest Pair Problem \checkmark
© Parameterized Set Intersection Problem

Set Intersection

k-Set Intersection

Input: $S_{1}, \ldots, S_{n} \subseteq[n]$
Output: $S_{i_{1}}, \ldots, S_{i_{k}}$ whose intersection is maximized

k-Set Intersection

Input: $S_{1}, \ldots, S_{n} \subseteq[n]$
Output: $S_{i_{1}}, \ldots, S_{i_{k}}$ whose intersection is maximized
© NP World: Ruling out PTAS (assuming NP $\neq \mathrm{P}$) is open!

k-Set Intersection

Input: $S_{1}, \ldots, S_{n} \subseteq[n]$
Output: $S_{i_{1}}, \ldots, S_{i_{k}}$ whose intersection is maximized
© NP World: Ruling out PTAS (assuming NP $\neq \mathrm{P}$) is open!
© No poly factor approximation poly time algorithm assuming "weak-ETH"[Xavier'12]

- Relies on Quasi-random PCP of [Khot'o6]

k-Set Intersection

Input: $S_{1}, \ldots, S_{n} \subseteq[n]$
Output: $S_{i_{1}}, \ldots, S_{i_{k}}$ whose intersection is maximized
© NP World: Ruling out PTAS (assuming NP $\neq \mathrm{P}$) is open!
© No poly factor approximation poly time algorithm assuming "weak-ETH"[Xavier'12]

- Relies on Quasi-random PCP of [Khot'o6]
© W[1] $\neq \mathrm{FPT}$: No $F(k)$ factor approximation $T(k) \cdot \operatorname{poly}(n)$ time algorithm [Lin'15]

k-Set Intersection

Input: $S_{1}, \ldots, S_{n} \subseteq[n]$
Output: $S_{i_{1}}, \ldots, S_{i_{k}}$ whose intersection is maximized
© NP World: Ruling out PTAS (assuming NP $\neq \mathrm{P}$) is open!
© No poly factor approximation poly time algorithm assuming "weak-ETH"[Xavier'12]

- Relies on Quasi-random PCP of [Khot'o6]
© W[1] $\neq \mathrm{FPT}$: No $F(k)$ factor approximation $T(k) \cdot \operatorname{poly}(n)$ time algorithm [Lin'15]
© ETH: No $F(k)$ factor approximation $n^{\Omega(\sqrt{k})}$ time algorithm [Lin'15]

Colored k-Set Intersection

Input: $S_{1}^{1}, \ldots, S_{n}^{1}, S_{1}^{2}, \ldots, S_{n}^{2}, \ldots, S_{1}^{k}, \ldots, S_{n}^{k} \subseteq[n]$
Output: $S_{i_{1}}^{1} \ldots, S_{i_{k}}^{k}$ whose intersection is maximized

Colored k-Set Intersection

Input: $S_{1}^{1}, \ldots, S_{n}^{1}, S_{1}^{2}, \ldots, S_{n}^{2}, \ldots, S_{1}^{k}, \ldots, S_{n}^{k} \subseteq[n]$
Output: $S_{i_{1}}^{1} \ldots, S_{i_{k}}^{k}$ whose intersection is maximized
© NP World: Essentially same as Extended Label Cover

Colored k-Set Intersection

Input: $S_{1}^{1}, \ldots, S_{n}^{1}, S_{1}^{2}, \ldots, S_{n}^{2}, \ldots, S_{1}^{k}, \ldots, S_{n}^{k} \subseteq[n]$
Output: $S_{i_{1}}^{1} \ldots, S_{i_{k}}^{k}$ whose intersection is maximized
© NP World: Essentially same as Extended Label Cover
© W[1] $\neq \mathrm{FPT}$: No $F(k)$ factor approximation $T(k) \cdot \operatorname{poly}(n)$ time algorithm [K-Laekhanukit-Manurangsi' 18]

Colored k-Set Intersection

Input: $S_{1}^{1}, \ldots, S_{n}^{1}, S_{1}^{2}, \ldots, S_{n}^{2}, \ldots, S_{1}^{k}, \ldots, S_{n}^{k} \subseteq[n]$
Output: $S_{i_{1}}^{1} \ldots, S_{i_{k}}^{k}$ whose intersection is maximized
© NP World: Essentially same as Extended Label Cover
© W[1] $\neq \mathrm{FPT}$: No $F(k)$ factor approximation $T(k) \cdot \operatorname{poly}(n)$ time algorithm [K-Laekhanukit-Manurangsi' 18]
© ETH: No $F(k)$ factor approximation $n^{\Omega(k)}$ time algorithm [K-Laekhanukit-Manurangsi'18]

Colored k-Set Intersection

Input: $S_{1}^{1}, \ldots, S_{n}^{1}, S_{1}^{2}, \ldots, S_{n}^{2}, \ldots, S_{1}^{k}, \ldots, S_{n}^{k} \subseteq[n]$
Output: $S_{i_{1}}^{1} \ldots, S_{i_{k}}^{k}$ whose intersection is maximized
© NP World: Essentially same as Extended Label Cover
© W[1] $\neq \mathrm{FPT}$: No $F(k)$ factor approximation $T(k) \cdot \operatorname{poly}(n)$ time algorithm [K-Laekhanukit-Manurangsi' 18]
© ETH: No $F(k)$ factor approximation $n^{\Omega(k)}$ time algorithm [K-Laekhanukit-Manurangsi'18]
© SETH: No $F(k)$ factor approximation $n^{k-\varepsilon}$ time algorithm [K-Laekhanukit-Manurangsi'18]

Colored k-Set Intersection

Input: $S_{1}^{1}, \ldots, S_{n}^{1}, S_{1}^{2}, \ldots, S_{n}^{2}, \ldots, S_{1}^{k}, \ldots, S_{n}^{k} \subseteq[n]$
Output: $S_{i_{1}}^{1} \ldots, S_{i_{k}}^{k}$ whose intersection is maximized
© NP World: Essentially same as Extended Label Cover
© W[1] $\neq \mathrm{FPT}$: No $F(k)$ factor approximation $T(k) \cdot \operatorname{poly}(n)$ time algorithm [K-Laekhanukit-Manurangsi' 18]
© ETH: No $F(k)$ factor approximation $n^{\Omega(k)}$ time algorithm [K-Laekhanukit-Manurangsi'18]
© SETH: No $F(k)$ factor approximation $n^{k-\varepsilon}$ time algorithm [K-Laekhanukit-Manurangsi'18]
© Tight running time lower bounds under W[1] \neq FPT, ETH, and SETH for exact version are straightforward!

Our Result: Equivalence

Theorem (Bukh-K-Narayanan'21)

© k-Set Intersection and Colo ed k-Set Intersection are computationally equivalent up to $O_{k}(1)$ factors in run time.

Our Result: Equivalence

Theorem (Bukh-K-Narayanan'21)

© k-Set Intersection and Colo ed k-Set Intersection are computationally equivalent up to $O_{k}(1)$ factors in run time.
© c-approximation of k-Set Intersection is harder than $c / h(k)$-approximation of Colo ed k-Set Intersection.

Our Technical Result

Our Technical Result

Many $\left(u_{1}, \ldots, u_{k}\right)$ in $U_{1} \times \cdots U_{k}$ has t common neighbors in W

Our Technical Result

Many $\left(u_{1}, \ldots, u_{k}\right)$ in $U_{1} \times \cdots U_{k}$ has t common neighbors in W

Every $X \subset U(|X|=k)$ has at most $t / F(k)$ common neighbors in W if $X \cap U_{i}=\emptyset$ for some $i \in[k]$

Our Technical Result

Many $\left(u_{1}, \ldots, u_{k}\right)$ in $U_{1} \times \cdots U_{k}$ has t common neighbors in W

Every $X \subset U(|X|=k)$ has at most $t / F(k)$ common neighbors in W if $X \cap U_{i}=\emptyset$ for some $i \in[k]$

They exist for $|W|=|U|$!

Set Intersection Lower Bounds

© W[1] $\neq \mathrm{FPT}$: No $F(k)$ factor approximation $T(k) \cdot \operatorname{poly}(n)$ time algorithm [Lin'15]
© ETH: No $F(k)$ factor approximation $n^{\Omega(k)}$ time algorithm [Bukh-K-Narayanan'21]
© SETH: No $F(k)$ factor approximation $n^{k-\varepsilon}$ time algorithm [Bukh-K-Narayanan'21]

Colored k-Set Intersection Problem

$$
C_{i}=\left\{S_{1}^{i}, \ldots, S_{n}^{i}\right\}
$$

Panchromatic Graph Composition

Panchromatic Graph Composition

Panchromatic Graph Composition

Edge between S_{i}^{j} and $(a, w) \Longleftrightarrow a \in S_{i}^{j}$ and edge between S_{i}^{j} and w in Panchromatic Graph

Construction of Panchromatic graphs

Polynomials are still our friends.

- TCS Folklore

Construction of Panchromatic graphs

© Pick w_{1}, \ldots, w_{k} random k-variate polynomials over \mathbb{F}_{q} of degree at most D

Construction of Panchromatic graphs

© Pick w_{1}, \ldots, w_{k} random k-variate polynomials over \mathbb{F}_{q} of degree at most D
© U_{i}^{0} is a set of n random k-variate polynomials over \mathbb{F}_{q} of degree at most d
© $U_{i}:=w_{i}+U_{i}{ }^{0}$

Construction of Panchromatic graphs

© Pick w_{1}, \ldots, w_{k} random k-variate polynomials over \mathbb{F}_{q} of degree at most D
© U_{i}^{0} is a set of n random k-variate polynomials over \mathbb{F}_{q} of degree at most d
(๑) $U_{i}:=w_{i}+U_{i}{ }^{0}$
© $W=\mathbb{F}_{q}^{k}$

Construction of Panchromatic graphs

© Pick w_{1}, \ldots, w_{k} random k-variate polynomials over \mathbb{F}_{q} of degree at most D
© U_{i}^{0} is a set of n random k-variate polynomials over \mathbb{F}_{q} of degree at most d
(อ) $U_{i}:=w_{i}+U_{i}{ }^{0}$
($W=\mathbb{F}_{q}^{k}$
© $\left(p+w_{i}, \alpha\right) \in U \times W$ is an edge $\Leftrightarrow \alpha$ is a root of $p+w_{i}$

Construction of Panchromatic graphs

© Pick w_{1}, \ldots, w_{k} random k-variate polynomials over \mathbb{F}_{q} of degree at most D
© U_{i}^{0} is a set of n random k-variate polynomials over \mathbb{F}_{q} of degree at most d
(อ) $U_{i}:=w_{i}+U_{i}{ }^{0}$
($W=\mathbb{F}_{q}^{k}$
© $\left(p+w_{i}, \alpha\right) \in U \times W$ is an edge $\Leftrightarrow \alpha$ is a root of $p+w_{i}$
© $w_{i}+p$ is uniform on $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{k}\right]_{\leq D}$

Technical Result

Theorem (Bukh-K-Narayanan'21)

For $k, d \in \mathbb{N}$ and a prime power $q \in \mathbb{N}$, let Z be the (random) number of common roots over \mathbb{F}_{q}^{k} of k independently chosen k-variate random \mathbb{F}_{q}-polynomials of degree d. Then, as $q \rightarrow \infty$, we have

Technical Result

Theorem (Bukh-K-Narayanan'21)

For $k, d \in \mathbb{N}$ and a prime power $q \in \mathbb{N}$, let Z be the (random) number of common roots over \mathbb{F}_{q}^{k} of k independently chosen k-variate random \mathbb{F}_{q}-polynomials of degree d. Then, as $q \rightarrow \infty$, we have

$$
\operatorname{Pr}\left[Z=d^{k}\right] \geq \frac{1-o(1)}{\left(d^{k}\right)!}
$$

Technical Result

Theorem (Bukh-K-Narayanan'21)

For $k, d \in \mathbb{N}$ and a prime power $q \in \mathbb{N}$, let Z be the (random) number of common roots over \mathbb{F}_{q}^{k} of k independently chosen k-variate random \mathbb{F}_{q}-polynomials of degree d. Then, as $q \rightarrow \infty$, we have

$$
\operatorname{Pr}\left[Z=d^{k}\right] \geq \frac{1-o(1)}{\left(d^{k}\right)!}
$$

as well as

$$
\operatorname{Pr}\left[Z>d^{k}\right]=O\left(q^{-d}\right)
$$

Analysis of Construction

Fix $S=\left\{w_{i}+p_{i} \in U_{i} \mid i \in[k]\right\}$

Analysis of Construction

Fix $S=\left\{w_{i}+p_{i} \in U_{i} \mid i \in[k]\right\}$
© $|N(S)|$ is distributed as the number of \mathbb{F}_{q}-solutions of k random polynomials from $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{k}\right]_{\leq D}$

Analysis of Construction

Fix $S=\left\{w_{i}+p_{i} \in U_{i} \mid i \in[k]\right\}$
© $|N(S)|$ is distributed as the number of \mathbb{F}_{q}-solutions of k random polynomials from $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{k}\right]_{\leq D}$
© $\operatorname{Pr}\left[|N(S)|>D^{k}\right]=O\left(q^{-D}\right)$

- By parameter choice, number of such sets $<1 /$ q

Analysis of Construction

Fix $S=\left\{w_{i}+p_{i} \in U_{i} \mid i \in[k]\right\}$
© $|N(S)|$ is distributed as the number of \mathbb{F}_{q}-solutions of k random polynomials from $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{k}\right]_{\leq D}$
© $\operatorname{Pr}\left[|N(S)|>D^{k}\right]=O\left(q^{-D}\right)$

- By parameter choice, number of such sets $<1 /$ q
© $\operatorname{Pr}\left[|N(S)|=D^{k}\right]=\left(2\left(D^{k}\right)!\right)^{-1}$

Analysis of Construction

Fix $S=\left\{w_{i}+p_{i} \in U_{i} \mid i \in[k]\right\}$
© $|N(S)|$ is distributed as the number of \mathbb{F}_{q}-solutions of k random polynomials from $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{k}\right]_{\leq D}$
© $\operatorname{Pr}\left[|N(S)|>D^{k}\right]=O\left(q^{-D}\right)$

- By parameter choice, number of such sets $<1 /$ q
(อ $\operatorname{Pr}\left[|N(S)|=D^{k}\right]=\left(2\left(D^{k}\right)!\right)^{-1}$

Fix $S \subseteq U,|S|=k$ and $S \cap U_{1}=\emptyset$.

Analysis of Construction

Fix $S=\left\{w_{i}+p_{i} \in U_{i} \mid i \in[k]\right\}$
© $|N(S)|$ is distributed as the number of \mathbb{F}_{q}-solutions of k random polynomials from $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{k}\right]_{\leq D}$
© $\operatorname{Pr}\left[|N(S)|>D^{k}\right]=O\left(q^{-D}\right)$

- By parameter choice, number of such sets $<1 /$ q
© $\operatorname{Pr}\left[|N(S)|=D^{k}\right]=\left(2\left(D^{k}\right)!\right)^{-1}$

Fix $S \subseteq U,|S|=k$ and $S \cap U_{1}=\emptyset$.
© $|N(S)|$ is distributed as the number of \mathbb{F}_{q}-solutions of k random polynomials from $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{k}\right]_{\leq D}$ or $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{k}\right]_{\leq d}$

Analysis of Construction

Fix $S=\left\{w_{i}+p_{i} \in U_{i} \mid i \in[k]\right\}$
© $|N(S)|$ is distributed as the number of \mathbb{F}_{q}-solutions of k random polynomials from $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{k}\right]_{\leq D}$
© $\operatorname{Pr}\left[|N(S)|>D^{k}\right]=O\left(q^{-D}\right)$

- By parameter choice, number of such sets $<1 /$ q
© $\operatorname{Pr}\left[|N(S)|=D^{k}\right]=\left(2\left(D^{k}\right)!\right)^{-1}$

Fix $S \subseteq U,|S|=k$ and $S \cap U_{1}=\emptyset$.
© $|N(S)|$ is distributed as the number of \mathbb{F}_{q}-solutions of k random polynomials from $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{k}\right]_{\leq D}$ or $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{k}\right]_{\leq d}$
© $\operatorname{Pr}\left[|N(S)|>d D^{k-1}\right]=O\left(q^{-d}\right)$

Our Technical Result

Many $\left(u_{1}, \ldots, u_{k}\right)$ in $U_{1} \times \cdots U_{k}$ has t common neighbors in W

Every $X \subset U(|X|=k)$ has at most $t / F(k)$ common neighbors in W if $X \cap U_{i}=\emptyset$ for some $i \in[k]$

They exist for $|W|=|U|$!

Set Intersection Lower Bounds

© W[1] $\neq \mathrm{FPT}$: No $F(k)$ factor approximation $T(k) \cdot \operatorname{poly}(n)$ time algorithm [Lin'15]
© ETH: No $F(k)$ factor approximation $n^{\Omega(k)}$ time algorithm [Bukh-K-Narayanan'21]
© SETH: No $F(k)$ factor approximation $n^{k-\varepsilon}$ time algorithm [Bukh-K-Narayanan'21]

Set Intersection Lower Bounds

© $\mathrm{W}[1] \neq \mathrm{FPT}$: No $F(k)$ factor approximation $T(k) \cdot \operatorname{poly}(n)$ time algorithm [Lin'15] New Proof!
© ETH: No $F(k)$ factor approximation $n^{\Omega(k)}$ time algorithm [Bukh-K-Narayanan'21]
© SETH: No $F(k)$ factor approximation $n^{k-\varepsilon}$ time algorithm [Bukh-K-Narayanan'21]

Starting from k-Clique

Starting from k-Clique

Input: $G([n], E)$
If G has a k-clique then there are $\binom{k}{2}$ vertices in E which in total have k neighbors

Starting from k-Clique

Input: $G([n], E)$
If G has a k-clique then there are $\binom{k}{2}$ vertices in E which in total have k neighbors

If G has no k-clique then any $\binom{k}{2}$ vertices in E has totally at least $k+1$ neighbors

Threshold Graph

Threshold Graph

Every k vertices in V has at least $n^{\Omega(1 / k)}$ common neighbors in A

Threshold Graph

Every k vertices in V has at least $n^{\Omega(1 / k)}$ common neighbors in A

Every $k+1$ vertices in V has at most $k^{O(k)}$ common neighbors in A

Threshold Graph Composition

Threshold Graph Composition

$(e, a) \in E \times A$ is an edge $\Leftrightarrow \exists v, v^{\prime} \in V$ such that
a and e are common neighbors of v and v^{\prime}

Completeness of Reduction

© Let $v_{1}, \ldots, v_{k} \in V$ be vertices of k-clique in G
© Let $A^{\prime} \subseteq A$ be common neighbors of v_{1}, \ldots, v_{k} in Threshold graph

Completeness of Reduction

© Let $v_{1}, \ldots, v_{k} \in V$ be vertices of k-clique in G
© Let $A^{\prime} \subseteq A$ be common neighbors of v_{1}, \ldots, v_{k} in Threshold graph
© Every $a \in A^{\prime}$ is also a common neighbor of $e_{v_{i}, v_{j}} \in E$

Completeness of Reduction

© Let $v_{1}, \ldots, v_{k} \in V$ be vertices of k-clique in G
© Let $A^{\prime} \subseteq A$ be common neighbors of v_{1}, \ldots, v_{k} in Threshold graph
© Every $a \in A^{\prime}$ is also a common neighbor of $e_{v_{i}, v_{j}} \in E$

Completeness of Threshold Graph

Every k vertices in V has at least $n^{\Omega(1 / k)}$ common neighbors in A

Soundness of Reduction

© Fix $\left(e_{1}, \ldots, e_{\binom{k}{2}}\right) \in E$ and let $A^{\prime} \subseteq A$ be its set of common neighbors

Soundness of Reduction

© Fix $\left(e_{1}, \ldots, e_{\binom{k}{2}}\right) \in E$ and let $A^{\prime} \subseteq A$ be its set of common neighbors
© Let $V^{\prime} \subseteq V$ be set of total neighbors of $\left(e_{1}, \ldots, e_{\binom{k}{2}}\right)$ in V
($\left|V^{\prime}\right| \geq k+1$

Soundness of Reduction

© $\operatorname{Fix}\left(e_{1}, \ldots, e_{\binom{k}{2}}\right) \in E$ and let $A^{\prime} \subseteq A$ be its set of common neighbors
© Let $V^{\prime} \subseteq V$ be set of total neighbors of $\left(e_{1}, \ldots, e_{\binom{k}{2}}\right)$ in V
(-) $\left|V^{\prime}\right| \geq k+1$
© A^{\prime} is a subset of the common neighbors of V^{\prime} in Threshold graph

Soundness of Reduction

© $\operatorname{Fix}\left(e_{1}, \ldots, e_{\binom{k}{2}}\right) \in E$ and let $A^{\prime} \subseteq A$ be its set of common neighbors
© Let $V^{\prime} \subseteq V$ be set of total neighbors of $\left(e_{1}, \ldots, e_{\binom{k}{2}}\right)$ in V
(-) $\left|V^{\prime}\right| \geq k+1$
© A^{\prime} is a subset of the common neighbors of V^{\prime} in Threshold graph

Soundness of Threshold Graph

Every $k+1$ vertices in V has at most
$k^{O(k)}$ common neighbors in A

Threshold Graph

Every k vertices in V has at least $n^{\Omega(1 / k)}$ common neighbors in A

Every $k+1$ vertices in V has at most $k^{O(k)}$ common neighbors in A

Threshold Graph

Outline of Talk

© Colored vs. Uncolored Problems
© Closest Pair Problem \checkmark
© Parameterized Set Intersection Problem

Key Takeaways

© Panchromatic Graphs Exist!

Key Takeaways

© Panchromatic Graphs Exist!
© Tight Running Time Lower Bounds for Approximating Parameterized Set Intersection

Key Takeaways

© Panchromatic Graphs Exist!
© Tight Running Time Lower Bounds for Approximating Parameterized Set Intersection
© Can we find explicit Panchromatic Graphs?

Key Takeaways

© Panchromatic Graphs Exist!
© Tight Running Time Lower Bounds for Approximating Parameterized Set Intersection
© Can we find explicit Panchromatic Graphs?
© Are there more applications for these graphs?

THANK
 YOU!

