Reversing Color Coding

Karthik C. S. (Rutgers University)

Joint work with

Boris Bukh (Carnegie Mellon University)

Bhargav Narayanan (Rutgers University)

O Colored vs. Uncolored Problems O

O Colored vs. Uncolored Problems O

Olosest Pair Problem

- O Colored vs. Uncolored Problems
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
- Olosest Pair Problem
- Parameterized Set Intersection Problem

Colored versus Uncolored Uncolored k-Clique Problem:

Input: G(V, E)Output: *k*-clique in *G* Uncolored *k*-Clique Problem:

Input: *G*(*V*,*E*) Output: *k*-clique in *G*

Colored *k*-Clique Problem:

Input: $G(V_1 \dot{\cup} V_2 \dot{\cup} \cdots \dot{\cup} V_k, E)$

Output: *k*-clique in *G* from $V_1 \times V_2 \times \cdots \times V_k$

Uncolored k-Clique Problem:

Input: G(V, E)Output: *k*-clique in *G*

Colored *k*-Clique Problem:

Input: $G(V_1 \cup V_2 \cup \cdots \cup V_k, E)$ Output: *k*-clique in *G* from $V_1 \times V_2 \times \cdots \times V_k$

Uncolored *k*-Clique Problem and Colored *k*-Clique Problem are computationally equivalent up to $O_k(1)$ factor

Uncolored *k*-Set Cover Problem:

Input: $S_1, \ldots, S_n \subseteq [n]$ Output: S_{i_1}, \ldots, S_{i_k} whose union is [n] Uncolored k-Set Cover Problem:

Input: $S_1, \ldots, S_n \subseteq [n]$ Output: S_{i_1}, \ldots, S_{i_k} whose union is [n]

Colored *k*-Set Cover Problem: Input: $S_1^1, \ldots, S_n^1, S_1^2, \ldots, S_n^2, \ldots, S_n^k, \ldots, S_n^k \subseteq [n]$

Output: $S_{i_1}^1, \ldots, S_{i_k}^k$ whose union is [n]

Uncolored *k*-Set Cover Problem:

Input: $S_1, \ldots, S_n \subseteq [n]$ Output: S_{i_1}, \ldots, S_{i_k} whose union is [n]

Colored *k*-Set Cover Problem: Input: $S_1^1, \ldots, S_n^1, S_1^2, \ldots, S_n^2, \ldots, S_1^k, \ldots, S_n^k \subseteq [n]$ Output: $S_{i_1}^1, \ldots, S_{i_k}^k$ whose union is [n]

> Uncolored and Colored *k*-Set Cover Problems are computationally equivalent up to $O_k(1)$ factor

Uncolored Clustering Problem:

Input: $P \subseteq \mathbb{R}^d$, $k \in \mathbb{N}$ Output: $P_1 \cup P_2 \cup \cdots \cup P_k := P$ minimizing some clustering objective Uncolored Clustering Problem:

Input: $P \subseteq \mathbb{R}^d, k \in \mathbb{N}$

Output: $P_1 \dot{\cup} P_2 \dot{\cup} \cdots \dot{\cup} P_k := P$ minimizing some clustering objective

Colored Clustering Problem:

Input: $P \subseteq \mathbb{R}^d, k \in \mathbb{N}, c : P \rightarrow [r]$

Output: $P_1 \dot{\cup} P_2 \dot{\cup} \cdots \dot{\cup} P_k := P$ minimizing some clustering objective such that each P_i is well-colored by *c*

Uncolored Clustering Problem:

Input: $P \subseteq \mathbb{R}^d, k \in \mathbb{N}$

Output: $P_1 \dot{\cup} P_2 \dot{\cup} \cdots \dot{\cup} P_k := P$ minimizing some clustering objective

Colored Clustering Problem:

Input: $P \subseteq \mathbb{R}^d, k \in \mathbb{N}, c : P \rightarrow [r]$

Output: $P_1 \dot{\cup} P_2 \dot{\cup} \cdots \dot{\cup} P_k := P$ minimizing some clustering objective such that each P_i is well-colored by *c*

Is Clustering under Fairness constraints computationally harder than Standard Clustering?

Uncolored Closest Pair Problem:

Input: $P \subseteq \mathbb{R}^d$ Output: $a, b \in P$ minimizing $||a - b||_p$ Uncolored Closest Pair Problem:

Input: $P \subseteq \mathbb{R}^d$ Output: $a, b \in P$ minimizing $||a - b||_p$

Colored Closest Pair Problem:

Input: $A, B \subseteq \mathbb{R}^d$ Output: $(a, b) \in A \times B$ minimizing $||a - b||_p$ Uncolored Closest Pair Problem:

Input: $P \subseteq \mathbb{R}^d$ Output: $a, b \in P$ minimizing $||a - b||_p$

Colored Closest Pair Problem:

Input: $A, B \subseteq \mathbb{R}^d$ Output: $(a, b) \in A \times B$ minimizing $||a - b||_p$

> Is Colored Closest Pair computationally harder than Uncolored Closest Pair?

Uncolored *k*-Set Intersection Problem:

Input: $S_1, \ldots, S_n \subseteq [n]$ Output: S_{i_1}, \ldots, S_{i_k} whose intersection is maximized Uncolored *k*-Set Intersection Problem:

Input: $S_1, \ldots, S_n \subseteq [n]$

Output: S_{i_1}, \ldots, S_{i_k} whose intersection is maximized

Colored *k*-Set Intersection Problem:

Input: $S_1^1, \ldots, S_n^1, S_1^2, \ldots, S_n^2, \ldots, S_1^k, \ldots, S_n^k \subseteq [n]$ Output: $S_{i_1}^1, \ldots, S_{i_k}^k$ whose intersection is maximized Uncolored *k*-Set Intersection Problem:

Input: $S_1, \ldots, S_n \subseteq [n]$

Output: S_{i_1}, \ldots, S_{i_k} whose intersection is maximized

Colored *k*-Set Intersection Problem:

Input: $S_1^1, \ldots, S_n^1, S_1^2, \ldots, S_n^2, \ldots, S_1^k, \ldots, S_n^k \subseteq [n]$ Output: $S_{i_1}^1, \ldots, S_{i_k}^k$ whose intersection is maximized

Is Colored *k*-Set Intersection problem computationally harder than Uncolored *k*-Set Intersection problem?

Using Color Coding we can reduce Uncolored version to Colored version

Using Color Coding we can reduce Uncolored version to Colored version

Can we reduce Colored version to Uncolored version?

- \odot Colored vs. Uncolored Problems \checkmark
- Olosest Pair Problem
- Parameterized Set Intersection Problem

Closest Pair

◎ Closest Pair problem (CP) in l_p -metric

◎ Closest Pair problem (CP) in ℓ_p -metric Input: $A \subset \mathbb{R}^d$, |A| = n O Closest Pair problem (CP) in ℓ_p-metric Input: A ⊂ ℝ^d, |A| = n Output: a*, b* ∈ A, min _{a,b∈A} _{a≠b} ||a − b||_p ○ Closest Pair problem (CP) in l_p-metric Input: A ⊂ ℝ^d, |A| = n
 Output: a^{*}, b^{*} ∈ A, min _{a,b∈A} _{a≠b} ||a - b||_p

◎ Trivial algorithm: $O(n^2d)$

 Olosest Pair problem (CP) in ℓ_p-metric Input: A ⊂ ℝ^d, |A| = n Output: a*, b* ∈ A, min _{a,b∈A} ||a − b||_p _{a≠b}

◎ Trivial algorithm: $O(n^2 d)$ Bently-Shamos'76: $2^{O(d)}n \log n$ (for ℓ_2 -metric) Olosest Pair problem (CP) in ℓ_p-metric Input: A ⊂ ℝ^d, |A| = n Output: a*, b* ∈ A, min _{a,b∈A} ||a − b||_p _{a≠b}

Trivial algorithm: O(n²d)
 Bently-Shamos'76: 2^{O(d)}n log n (for l₂-metric)
 Subcubic algorithms when d = O(n) [ILLP04, MKZ09, GS17]

 Olosest Pair problem (CP) in ℓ_p-metric Input: A ⊂ ℝ^d, |A| = n Output: a*, b* ∈ A, min _{a,b∈A} ||a − b||_p _{a≠b}

- Trivial algorithm: O(n²d)
 Bently-Shamos'76: 2^{O(d)}n log n (for l₂-metric)
 Subcubic algorithms when d = O(n) [ILLP04, MKZ09, GS17]
- ◎ What happens when $d \approx \text{polylog } n$?

◎ Bichromatic Closest Pair problem (BCP) in l_p metric

◎ Bichromatic Closest Pair problem (BCP) in ℓ_p metric Input: $A, B \subset \mathbb{R}^d$, |A| = |B| = n

 ■ Bichromatic Closest Pair problem (BCP) in ℓ_p metric Input: A, B ⊂ ℝ^d, |A| = |B| = n

 Output: a^{*} ∈ A, b^{*} ∈ B, min _{a∈A} ||a − b||_p
 b∈B

- Bichromatic Closest Pair problem (BCP) in ℓ_p metric
 Input: A, B ⊂ ℝ^d, |A| = |B| = n

 Output: a* ∈ A, b* ∈ B, min ||a − b||_p
 <u>a∈A</u>
 <u>b∈B</u>
- Trivial algorithm: $O(n^2d)$

- Bichromatic Closest Pair problem (BCP) in ℓ_p metric

 Input: A, B ⊂ ℝ^d, |A| = |B| = n

 Output: a^{*} ∈ A, b^{*} ∈ B, min ||a b||_p

 <u>a ∈ A b ∈ B

 </u>
- Trivial algorithm: $O(n^2d)$
- Computationally equivalent to determining Minimum Spanning Tree in lp-metric [AESW91, KLN99]
Bichromatic Closest Pair

- Bichromatic Closest Pair problem (BCP) in ℓ_p metric

 Input: A, B ⊂ ℝ^d, |A| = |B| = n

 Output: a^{*} ∈ A, b^{*} ∈ B, min ||a − b||_p

 <u>a ∈ A b ∈ B

 </u>
- ◎ Trivial algorithm: $O(n^2d)$
- Computationally equivalent to determining Minimum Spanning Tree in lp-metric [AESW91, KLN99]
- ◎ What happens when $d \approx \text{polylog } n$?

Bichromatic Closest Pair

- Bichromatic Closest Pair problem (BCP) in ℓ_p metric

 Input: A, B ⊂ ℝ^d, |A| = |B| = n

 Output: a^{*} ∈ A, b^{*} ∈ B, min ||a − b||_p

 <u>a ∈ A b ∈ B

 </u>
- ◎ Trivial algorithm: $O(n^2d)$
- Computationally equivalent to determining Minimum Spanning Tree in lp-metric [AESW91, KLN99]
- What happens when $d \approx \text{polylog } n$? What happens when $d = \omega(1)$?

For every $\varepsilon > 0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve *k*-SAT on *m* variables.

For every $\varepsilon > 0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve *k*-SAT on *m* variables.

Let $p \ge 1$. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:

For every $\varepsilon > 0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve *k*-SAT on *m* variables.

Let $p \ge 1$. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:

◎ BCP in ℓ_p -metric when $d = \omega(\log n)$ [AW15]

For every $\varepsilon > 0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve *k*-SAT on *m* variables.

Let $p \ge 1$. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:

- ◎ BCP in ℓ_p -metric when $d = \omega(\log n)$ [AW15]
- ◎ (1 + δ)-approximate BCP in ℓ_p -metric when $d = \omega(\log n)$ [R18]

For every $\varepsilon > 0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve *k*-SAT on *m* variables.

Let $p \ge 1$. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:

- ◎ BCP in ℓ_p -metric when $d = \omega(\log n)$ [AW15]
- ◎ $(1 + \delta)$ -approximate BCP in l_p -metric when $d = ω(\log n)$ [R18]
- BCP in ℓ_p -metric when $d = 2^{O(\log^* n)}$ [W18, C18]

BCP is at least as hard as CP in every ℓ_p -metric for all d.

Theorem (K-Manurangsi'18)

- BCP and CP in ℓ_p -metric are computationally equivalent when $d = (\log n)^{\Omega(1)}$.
- ◎ $(1 + \delta)$ -approximate BCP can be solved by $\tilde{O}(\sqrt{n})$ calls to $(1 + \delta)$ -approximate CP in ℓ_p -metric when $d = \omega(\log n)$.

Every (u_1, \ldots, u_k) in $U_1 \times \cdots \cup U_k$ has *t* common neighbors in *W*

Every (u_1, \ldots, u_k) in $U_1 \times \cdots \cup U_k$ has *t* common neighbors in *W*

Every $X \subset U$ (|X| = k) has at most t - 1 common neighbors in Wif $X \cap U_i = \emptyset$ for some $i \in [k]$

Every (u_1, \ldots, u_k) in $U_1 \times \cdots \cup U_k$ has *t* common neighbors in *W*

Every $X \subset U$ (|X| = k) has at most t - 1 common neighbors in Wif $X \cap U_i = \emptyset$ for some $i \in [k]$

Do they exist for small |W|?

Every (u_1, u_2) in $U_1 \times U_2$ has *t* common neighbors in *W*

Every (u_1, u_2) in $U_1 \times U_2$ has *t* common neighbors in *W*

Every $\{u, u'\} \subset U_i$ has at most t - 1 common neighbors in W

Every (u_1, u_2) in $U_1 \times U_2$ has *t* common neighbors in *W*

Every $\{u, u'\} \subset U_i$ has at most t - 1 common neighbors in W

Do they exist for small |W|?

Bichromatic Closest Pair in $\{0, 1\}^d$

Bichromatic Closest Pair in $\{0, 1\}^d$

Edge: $x \in A \cup B$ and $i \in [d]$ if $x_i = 1$

Bichromatic Closest Pair in $\{0, 1\}^d$

Edge: $x \in A \cup B$ and $i \in [d]$ if $x_i = 1$

Panchromatic Graph Composition

Panchromatic Graph Composition

Panchromatic Graphs when k = 2 [K-Manurangsi'18]

Many (u_1, u_2) in $U_1 \times U_2$ has *t* common neighbors in *W*

Every $\{u, u'\} \subset U_i$ has at most t - 1 common neighbors in W

Construction of Panchromatic graphs when k = 2

Polynomials are our friends.

- TCS Folklore

Construction of Panchromatic graphs when k = 2

\odot U_1 := set of degree *d* univariate polynomials over \mathbb{F}_q

*U*₁ := set of degree *d* univariate polynomials over F_q
 *U*₂ := {x^{d+1} + p(x) | p(x) ∈ U₁}

- $U_1 := \text{set of degree } d$ univariate polynomials over \mathbb{F}_q
- ◎ $U_2 := \{x^{d+1} + p(x) \mid p(x) \in U_1\}$
- $\odot \ W = \mathbb{F}_q \times \mathbb{F}_q$

- ◎ U_1 := set of degree *d* univariate polynomials over \mathbb{F}_q
- ◎ $U_2 := \{ x^{d+1} + p(x) \mid p(x) \in U_1 \}$
- $\odot \ W = \mathbb{F}_q \times \mathbb{F}_q$
- $(p, (\alpha, \beta)) \in U \times W$ is an edge $\Leftrightarrow p(\alpha) = \beta$

Panchromatic Graphs when k = 2

- $(p, p') \in U_i$ have (α, β) as common neighbor
- $\Rightarrow \alpha \text{ is root of } p p'$
- $\Rightarrow (p, p') \in U_i \text{ have at most}$ *d* common neighbors

Panchromatic Graphs when k = 2

- $(p, p') \in U_i$ have (α, β) as common neighbor
- $\Rightarrow \alpha \text{ is root of } p p'$
- $\Rightarrow (p, p') \in U_i \text{ have at most}$ *d* common neighbors

 $(p, x^{d+1} + p') \in U_1 \times U_2$ have d + 1 common neighbors $\Leftrightarrow x^{d+1} + p' - p$ has d + 1distinct roots

Number of such polynomials: $\binom{q}{d+1}$

Panchromatic Graphs when k = 2

- $(p, p') \in U_i$ have (α, β) as common neighbor
- $\Rightarrow \alpha \text{ is root of } p p'$
- $\Rightarrow (p, p') \in U_i \text{ have at most}$ *d* common neighbors

 $(p, x^{d+1} + p') \in U_1 \times U_2$ have d + 1 common neighbors $\Leftrightarrow x^{d+1} + p' - p$ has d + 1distinct roots

Number of such polynomials: $\binom{q}{d+1}$

They exist for |W| = polylog(|U|)!

Theorem (K-Manurangsi'18)

- BCP and CP in ℓ_p -metric are computationally equivalent when $d = (\log n)^{\Omega(1)}$.
- ◎ $(1 + \delta)$ -approximate BCP can be solved by $O(\sqrt{n})$ calls to $(1 + \delta)$ -approximate CP in ℓ_p -metric when $d = \omega(\log n)$.

Panchromatic Graphs

Many (u_1, \ldots, u_k) in $U_1 \times \cdots \cup U_k$ has *t* common neighbors in *W*

Every $X \subset U$ (|X| = k) has at most t - 1 common neighbors in Wif $X \cap U_i = \emptyset$ for some $i \in [k]$

Do they exist for small |W|?

- \odot Colored vs. Uncolored Problems \checkmark
- \odot Closest Pair Problem \checkmark
- Parameterized Set Intersection Problem

Set Intersection

◎ NP World: Ruling out PTAS (assuming NP \neq P) is open!

- ◎ NP World: Ruling out PTAS (assuming NP \neq P) is open!
- No poly factor approximation poly time algorithm assuming "weak-ETH"[Xavier'12]
 - Relies on Quasi-random PCP of [Khot'06]

- ◎ NP World: Ruling out PTAS (assuming NP≠P) is open!
- No poly factor approximation poly time algorithm assuming "weak-ETH"[Xavier'12]

• Relies on Quasi-random PCP of [Khot'06]

◎ W[1]≠FPT: No *F(k)* factor approximation *T(k)*·poly(*n*) time algorithm [Lin'15]

- ◎ NP World: Ruling out PTAS (assuming NP≠P) is open!
- No poly factor approximation poly time algorithm assuming "weak-ETH"[Xavier'12]

• Relies on Quasi-random PCP of [Khot'06]

- ◎ W[1]≠FPT: No F(k) factor approximation T(k)·poly(n) time algorithm [Lin'15]
- ◎ ETH: No *F*(*k*) factor approximation $n^{\Omega(\sqrt{k})}$ time algorithm [Lin'15]

NP World: Essentially same as Extended Label Cover

- NP World: Essentially same as Extended Label Cover
- ◎ W[1]≠FPT: No *F(k)* factor approximation *T(k)*·poly(*n*) time algorithm [K-Laekhanukit-Manurangsi'18]

- NP World: Essentially same as Extended Label Cover
- ◎ W[1]≠FPT: No F(k) factor approximation T(k)·poly(n) time algorithm [K-Laekhanukit-Manurangsi'18]
- ETH: No F(k) factor approximation $n^{\Omega(k)}$ time algorithm [K-Laekhanukit-Manurangsi'18]

- NP World: Essentially same as Extended Label Cover
- ◎ W[1]≠FPT: No *F(k)* factor approximation *T(k)*·poly(*n*) time algorithm [K-Laekhanukit-Manurangsi'18]
- ETH: No *F*(*k*) factor approximation *n*^{Ω(k)} time algorithm [K-Laekhanukit-Manurangsi'18]
- SETH: No F(k) factor approximation $n^{k-\varepsilon}$ time algorithm [K-Laekhanukit-Manurangsi'18]

- NP World: Essentially same as Extended Label Cover
- ◎ W[1]≠FPT: No *F(k)* factor approximation *T(k)*·poly(*n*) time algorithm [K-Laekhanukit-Manurangsi'18]
- ETH: No *F*(*k*) factor approximation *n*^{Ω(k)} time algorithm [K-Laekhanukit-Manurangsi'18]
- SETH: No F(k) factor approximation $n^{k-\varepsilon}$ time algorithm [K-Laekhanukit-Manurangsi'18]
- ◎ Tight running time lower bounds under W[1]≠FPT, ETH, and SETH for exact version are straightforward!

Theorem (Bukh-K-Narayanan'21)

• *k*-Set Intersection and Colored *k*-Set Intersection are computationally equivalent up to $O_k(1)$ factors in run time.

Theorem (Bukh-K-Narayanan'21)

- *k*-Set Intersection and Colored *k*-Set Intersection are computationally equivalent up to $O_k(1)$ factors in run time.
- *c*-approximation of *k*-Set Intersection is harder than c/h(k)-approximation of Colored *k*-Set Intersection.

Many (u_1, \ldots, u_k) in $U_1 \times \cdots \cup U_k$ has *t* common neighbors in *W*

Many (u_1, \ldots, u_k) in $U_1 \times \cdots \cup U_k$ has *t* common neighbors in *W*

Every $X \subset U$ (|X| = k) has at most t/F(k) common neighbors in W if $X \cap U_i = \emptyset$ for some $i \in [k]$

Many (u_1, \ldots, u_k) in $U_1 \times \cdots \cup U_k$ has *t* common neighbors in *W*

Every $X \subset U$ (|X| = k) has at most t/F(k) common neighbors in W if $X \cap U_i = \emptyset$ for some $i \in [k]$

They exist for |W| = |U|!

- W[1]≠FPT: No *F*(*k*) factor approximation *T*(*k*)·poly(*n*) time algorithm [Lin'15]
- ETH: No F(k) factor approximation $n^{\Omega(k)}$ time algorithm [Bukh-K-Narayanan'21]
- SETH: No F(k) factor approximation $n^{k-\varepsilon}$ time algorithm [Bukh-K-Narayanan'21]

Colored *k*-Set Intersection Problem

$$C_i = \{S_1^i, \dots, S_n^i\}$$

Panchromatic Graph Composition

Panchromatic Graph Composition

Panchromatic Graph Composition

Edge between S_i^j and $(a, w) \iff a \in S_i^j$ and edge between S_i^j and w in Panchromatic Graph

Polynomials are still our friends. – TCS Folklore

• Pick w_1, \ldots, w_k random *k*-variate polynomials over \mathbb{F}_q of degree at most *D*

- Pick w_1, \ldots, w_k random *k*-variate polynomials over \mathbb{F}_q of degree at most *D*
- U_i^0 is a set of *n* random *k*-variate polynomials over \mathbb{F}_q of degree at most *d*
- $\odot U_i := w_i + U_i^0$

- Pick w_1, \ldots, w_k random *k*-variate polynomials over \mathbb{F}_q of degree at most *D*
- U_i^0 is a set of *n* random *k*-variate polynomials over \mathbb{F}_q of degree at most *d*
- ◎ $U_i := w_i + U_i^0$ ◎ $W = \mathbb{F}_q^k$

- Pick w_1, \ldots, w_k random *k*-variate polynomials over \mathbb{F}_q of degree at most *D*
- ◎ U_i^0 is a set of *n* random *k*-variate polynomials over \mathbb{F}_q of degree at most *d*
- $\odot U_i := w_i + U_i^0$
- \odot $W = \mathbb{F}_q^k$
- $(p + w_i, \alpha) \in U \times W$ is an edge $\Leftrightarrow \alpha$ is a root of $p + w_i$

- Pick w_1, \ldots, w_k random *k*-variate polynomials over \mathbb{F}_q of degree at most *D*
- ◎ U_i^0 is a set of *n* random *k*-variate polynomials over \mathbb{F}_q of degree at most *d*
- $\odot U_i := w_i + U_i^0$
- \odot $W = \mathbb{F}_q^k$
- $(p + w_i, \alpha) \in U \times W$ is an edge $\Leftrightarrow \alpha$ is a root of $p + w_i$
- \odot $w_i + p$ is uniform on $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$

Theorem (Bukh-K-Narayanan'21)

For $k, d \in \mathbb{N}$ and a prime power $q \in \mathbb{N}$, let *Z* be the (random) number of common roots over \mathbb{F}_q^k of *k* independently chosen *k*-variate random \mathbb{F}_q -polynomials of degree *d*. Then, as $q \to \infty$, we have
Theorem (Bukh-K-Narayanan'21)

For $k, d \in \mathbb{N}$ and a prime power $q \in \mathbb{N}$, let *Z* be the (random) number of common roots over \mathbb{F}_q^k of *k* independently chosen *k*-variate random \mathbb{F}_q -polynomials of degree *d*. Then, as $q \to \infty$, we have

$$\Pr[Z=d^k] \ge \frac{1-o(1)}{(d^k)!},$$

Theorem (Bukh-K-Narayanan'21)

For $k, d \in \mathbb{N}$ and a prime power $q \in \mathbb{N}$, let *Z* be the (random) number of common roots over \mathbb{F}_q^k of *k* independently chosen *k*-variate random \mathbb{F}_q -polynomials of degree *d*. Then, as $q \to \infty$, we have

$$\Pr[Z=d^k] \ge \frac{1-o(1)}{(d^k)!},$$

as well as

 $\Pr[Z > d^k] = O(q^{-d}).$

Analysis of Construction

 $\operatorname{Fix} S = \{w_i + p_i \in U_i | i \in [k]\}$

Analysis of Construction

 $\operatorname{Fix} \mathbf{S} = \{w_i + p_i \in U_i | i \in [k]\}$

◎ |N(S)| is distributed as the number of \mathbb{F}_q -solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$

- ◎ |N(S)| is distributed as the number of \mathbb{F}_q -solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$
- $\odot \operatorname{Pr}[|N(S)| > D^k] = O(q^{-D})$
 - By parameter choice, number of such sets < 1/q

◎ |N(S)| is distributed as the number of \mathbb{F}_q -solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$

$$\odot \Pr[|N(S)| > D^k] = O(q^{-D})$$

• By parameter choice, number of such sets < 1/q

◎
$$\Pr[|N(S)|=D^k] = (2(D^k)!)^{-1}$$

◎ |N(S)| is distributed as the number of \mathbb{F}_q -solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$

$$\odot \Pr[|N(S)| > D^k] = O(q^{-D})$$

• By parameter choice, number of such sets < 1/q

•
$$\Pr[|N(S)|=D^k] = (2(D^k)!)^{-1}$$

Fix $S \subseteq U$, |S| = k and $S \cap U_1 = \emptyset$.

◎ |N(S)| is distributed as the number of \mathbb{F}_q -solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$

$$\odot \Pr[|N(S)| > D^k] = O(q^{-D})$$

• By parameter choice, number of such sets < 1/q

•
$$\Pr[|N(S)|=D^k] = (2(D^k)!)^{-1}$$

Fix $S \subseteq U$, |S| = k and $S \cap U_1 = \emptyset$.

◎ |N(S)| is distributed as the number of \mathbb{F}_q -solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$ or $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq d}$

◎ |N(S)| is distributed as the number of \mathbb{F}_q -solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$

$$\odot \Pr[|N(S)| > D^k] = O(q^{-D})$$

• By parameter choice, number of such sets < 1/q

•
$$\Pr[|N(S)|=D^k] = (2(D^k)!)^{-1}$$

Fix $S \subseteq U$, |S| = k and $S \cap U_1 = \emptyset$.

◎ |N(S)| is distributed as the number of \mathbb{F}_q -solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$ or $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq d}$

•
$$\Pr[|N(S)| > dD^{k-1}] = O(q^{-d})$$

Our Technical Result

Many (u_1, \ldots, u_k) in $U_1 \times \cdots \cup U_k$ has *t* common neighbors in *W*

Every $X \subset U$ (|X| = k) has at most t/F(k) common neighbors in W if $X \cap U_i = \emptyset$ for some $i \in [k]$

They exist for |W| = |U|!

- W[1]≠FPT: No *F*(*k*) factor approximation *T*(*k*)·poly(*n*) time algorithm [Lin'15]
- ETH: No F(k) factor approximation $n^{\Omega(k)}$ time algorithm [Bukh-K-Narayanan'21]
- SETH: No F(k) factor approximation $n^{k-\varepsilon}$ time algorithm [Bukh-K-Narayanan'21]

- W[1]≠FPT: No *F*(*k*) factor approximation *T*(*k*)·poly(*n*) time algorithm [Lin'15] New Proof!
- ETH: No F(k) factor approximation $n^{\Omega(k)}$ time algorithm [Bukh-K-Narayanan'21]
- SETH: No F(k) factor approximation $n^{k-\varepsilon}$ time algorithm [Bukh-K-Narayanan'21]

Starting from *k*-Clique

Input: G([n], E)

Starting from *k*-Clique

Input: *G*([*n*], *E*)

If *G* has a *k*-clique then there are $\binom{k}{2}$ vertices in *E* which in total have *k* neighbors

Starting from k-Clique

Input: G([n], E)

If *G* has a *k*-clique then there are $\binom{k}{2}$ vertices in *E* which in total have *k* neighbors

If *G* has no *k*-clique then any $\binom{k}{2}$ vertices in *E* has totally at least k + 1 neighbors

Every *k* vertices in *V* has at least $n^{\Omega(1/k)}$ common neighbors in *A*

Every *k* vertices in *V* has at least $n^{\Omega(1/k)}$ common neighbors in *A*

Every k + 1 vertices in V has at most $k^{O(k)}$ common neighbors in A

Threshold Graph Composition

Threshold Graph Composition

 $(e, a) \in E \times A$ is an edge $\Leftrightarrow \exists v, v' \in V$ such that *a* and *e* are common neighbors of *v* and *v'*

Completeness of Reduction

- ◎ Let $v_1, ..., v_k \in V$ be vertices of *k*-clique in *G*
- ◎ Let $A' \subseteq A$ be common neighbors of $v_1, ..., v_k$ in Threshold graph

Completeness of Reduction

- ◎ Let $v_1, \ldots, v_k \in V$ be vertices of *k*-clique in *G*
- ◎ Let $A' \subseteq A$ be common neighbors of $v_1, ..., v_k$ in Threshold graph
- ◎ Every $a \in A'$ is also a common neighbor of $e_{v_i,v_i} \in E$

Completeness of Reduction

- ◎ Let $v_1, \ldots, v_k \in V$ be vertices of *k*-clique in *G*
- ◎ Let $A' \subseteq A$ be common neighbors of $v_1, ..., v_k$ in Threshold graph
- ◎ Every $a \in A'$ is also a common neighbor of $e_{v_i,v_i} \in E$

Completeness of Threshold Graph

Every *k* vertices in *V* has at least $n^{\Omega(1/k)}$ common neighbors in *A*

Fix (e₁,..., e_(^k₂)) ∈ E and let A' ⊆ A be its set of common neighbors

- ◎ Fix $(e_1, ..., e_{\binom{k}{2}}) \in E$ and let $A' \subseteq A$ be its set of common neighbors
- ◎ Let $V' \subseteq V$ be set of total neighbors of $(e_1, \ldots, e_{\binom{k}{2}})$ in V
- $\odot |V'| \ge k+1$

- ◎ Fix $(e_1, ..., e_{\binom{k}{2}}) \in E$ and let $A' \subseteq A$ be its set of common neighbors
- ◎ Let $V' \subseteq V$ be set of total neighbors of $(e_1, \ldots, e_{\binom{k}{2}})$ in V
- $\bigcirc |V'| \ge k+1$
- \odot *A*' is a subset of the common neighbors of *V*' in Threshold graph

- ◎ Fix $(e_1, ..., e_{\binom{k}{2}}) \in E$ and let $A' \subseteq A$ be its set of common neighbors
- ◎ Let $V' \subseteq V$ be set of total neighbors of $(e_1, \ldots, e_{\binom{k}{2}})$ in V
- $\bigcirc |V'| \ge k+1$
- \odot *A*' is a subset of the common neighbors of *V*' in Threshold graph

Soundness of Threshold Graph

Every k + 1 vertices in V has at most $k^{O(k)}$ common neighbors in A

Every *k* vertices in *V* has at least $n^{\Omega(1/k)}$ common neighbors in *A*

Every k + 1 vertices in V has at most $k^{O(k)}$ common neighbors in A

- \odot Colored vs. Uncolored Problems \checkmark
- \odot Closest Pair Problem \checkmark
- \odot Parameterized Set Intersection Problem \checkmark

Panchromatic Graphs Exist!

- Panchromatic Graphs Exist!
- Tight Running Time Lower Bounds for Approximating Parameterized Set Intersection

- Panchromatic Graphs Exist!
- Tight Running Time Lower Bounds for Approximating Parameterized Set Intersection
- Can we find explicit Panchromatic Graphs?

- Panchromatic Graphs Exist!
- Tight Running Time Lower Bounds for Approximating Parameterized Set Intersection
- Can we find explicit Panchromatic Graphs?
- Are there more applications for these graphs?

THANK YOU!