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Given four points in the Euclidean plane,
what is the cheapest network connecting them?
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OPEN PROBLEM

Given 7 points in the Euclidean plane, show that the above
configuration maximizes ratio of cost of Minimum Spanning Tree to

cost of Minimum Steiner Tree



Quest for Computing Steiner Tree

So little we know and yet, we will continue to explore!
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Steiner Tree: Formalism

® (T, A) is a metric space Terminals
© Steiner Tree of X CT'isa Tree T(X U S, E):

o SCT Steiner Points

o Cost of T is minimized:

cost(T) = Z Au,v)

(u,v)eE
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Steiner Tree Computation

Continuous Steiner Tree

© (I, A) is a metric space

© Input: X CT'

© Output: A Tree T(X U S, E):
oScT

o Cost of T is minimized (over all possible S and E):

cost(T) = Z Au,v)

(u,v)eE



Steiner Tree Computation

Discrete -
Contreus Steiner Tree

© (I, A) is a metric space

© Input: X CT' and S CT

© Output: %Tree T(XUS,E):

o sckK

o Cost of T is minimized (over all possible S and E):

cost(T) = Z Au,v)

(u,v)eE



Steiner Tree Computation

Discrete
Contreus Steiner Tree

© (I, A) is a metric space

@ Input: X CT and 8§ € T ——pPossible that S =T

© Output: A:STree T(XUS,E):

o sckK

o Cost of T is minimized (over all possible S and E):

cost(T) = Z Au,v)

(u,v)eE
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© CST is NP-hard in ¢;-metric (Garey-Johnson’yy)

o Even in the plane
o DST is NP-hard in ¢;-metric

© CST is NP-hard in {)-metric (Foulds-Graham’82)
o DST is NP-hard in {y-metric
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Approximation Algorithms

© 2-approximation for DST and CST in every metric
(Gilbert-Pollak’68)

o Compute Minimum Spanning Tree of only Terminals

© 1.39-approximation for DST in General metrics
(Byrka-Grandoni-Rothvof3-Sanitd’10)

© PTAS for CST in fixed dimensional ¢, metric (Arora’96)
o PTAS for CST in fixed dimensional ¢, metrics
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© DST in General metrics is NP-hard to approximate to 1.01
factor (Chlebik-Chlebikova’o8)

© DST and CST in {y metric are NP-hard to approximate to
1.004 factor (Day-Johnson-Sankoff'86 and Wareham’9gs)

© DST and CST in ¢; metric are NP-hard to approximate to
1.004 factor (Trevisan’gy)
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(i.e., Q(log n) dimensions)
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Hardness of Approximation: Questions

My Project
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Spectrum of Computational Problems

Max Cut
Circuit-SAT Set Cover Independent Set
CSP Max Coverage Clique

Vertex Cover

F6H

Clustering

3-SAT :
Label Cover BLIN @

TSP

13



Hardness of Approximation: Questions

My Project

What is the right reduction for DST in General metrics?

14



Hardness of Approximation: Questions

My Project

What is the right reduction for DST in General metrics?

What is the right reduction for CST in {,-metrics?

14



Hardness of Approximation: Questions

My Project

What is the right reduction for DST in General metrics?

What is the right reduction for CST in {,-metrics?

What is the right reduction for DST in {,-metrics?

14



Hardness of Approximation: Questions

My Project

What is the right reduction for DST in General metrics?

What is the right reduction for CST in {,-metrics?

What is the right reduction for DST in {,-metrics?

What is the connection between DST and CST in £,-metrics?
14
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Our Results

Theorem (Fleischmann—Gavva—K’'23)
Assuming NP#DP, no PTAS for DST in every {p-metric.

© Above result holds even in O(log n) dimensions

© No PTAS for DST in Euclidean metric

o Proof gives new insights into the difficulty of proving
hardness for Euclidean Steiner Tree
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Our Results

Theorem (Fleischmann—Gavva—K’'23)

For every metric space, and every ¢ > 0, there is a

poly(n, 1/e)-time reduction from CST to DST, preserving the
minimum Steiner tree cost to (1 + ¢) factor.

© DST is harder than CST

o Proving DST hardness is a stepping stone

© Key ingredient: Steiner Tree decomposition through
Terminal-Terminal edges (Bartal-Gottlieb’21)
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Our Results

Theorem (Fleischmann—Gavva—K’'23)
Assuming NP#DP, no PTAS for CST in the {-metric.

Theorem (Fleischmann—Gavva—K’'23)

There is a poly time reduction from a graph G on n vertices to
an instance of CST in the {..-metric such that the optimal cost
of the Steiner tree is (1 + x(G))/2.
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Inapproximability of DST in Hamming metric
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Analysis of the Reduction

©® Steiner Points have to be the vertices in Vertex Cover

o Non-trivial in case of CST

© Completeness: Steiner Tree costs 0.52n + 2n

©® Soundness: Steiner Tree costs 0.53n + 2n

Theorem

Given input X € {0,1}" of CST or input X, 8 := {é1, ..., €y} of
DST. It is NP-hard to distinguish:

YES: Cost of Steiner Tree of X is at most 2.52n

NO: Cost of Steiner Tree of X is at least 2.53n
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Vertex Cover to Euclidean Steiner Tree

© Facilities: Vertices — {A-¢1,A-2,...,A-€,}

© Terminals: 0 and Edges — {¢;+¢;:(i,j) € E}
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Vertex Cover to Euclidean Steiner Tree

© Facilities: Vertices — {A-¢1,A-2,...,A-€,}
® Terminals: 0 and Edges — {¢;+¢;:(i,j) € E}

© Forevery A € (0,1) it is cheaper to connect two edges to 0
than through a Steiner point

© To avoid this we need vertex cover to be independent set

© But this is an easy problem

All these obstacles are for DST
The obstacles for CST are way more serious!
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3-Set Packing to Euclidean DST

3-Set Packing;:
© Input: Set System (U, 6), 6 C ([g])

© Objective: Maximum size subcollection of 6 which are
pairwise disjoint
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3-Set Packing to Euclidean DST

3-Set Packing;:
© Input: Set System (U, 6), 6 C ([g])

© Objective: Maximum size subcollection of 6 which are
pairwise disjoint

Theorem (Petrank’94)
For some ¢ > 0, it is NP-hard to distinguish:
YES: There are /3 pairwise disjoint subsets in the input

NO: There are at most (1 — ¢) - n/3 pairwise disjoint subsets in
the input

23



3-Set Packing to Euclidean DST

© Terminals: Universe — {¢1,¢>,...,¢€,}

© Facilities: Sets — {A-¢; +A-¢j+A-ex:{i,j, k} € €}
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3-Set Packing to Euclidean DST

© Terminals: Universe — {¢1,¢>,...,¢€,}

© Facilities: Sets — {A-¢; +A-¢j+A-ex:{i,j, k} € €}
© We must choose A < 0.31

© For our reduction A = 1/6 is optimal

© Additional terminal: 0

Structural Claim

Steiner points used form the maximum packing of sets
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Structural Picture
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Completeness

© n/3 pairwise disjoint sets are the Steiner points
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Completeness

© n/3 pairwise disjoint sets are the Steiner points

® Terminal - Steiner point distance is /3

© 0 - Steiner point distance is /15

©® Steiner Tree cost is:

(n/3)-\/g+n-\/§
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Soundness

Let T(X U S, E) be the min cost Steiner Tree

© Claim 1: No Terminal — Terminal edge in E
® Claim 2: All terminals are leaves in T

© Claim 3: No Steiner point — Steiner point edge in E

© Claim 4: Every Steiner point is adjacent to 3 terminals and 0

Costof T = (n/3)(1 - e)\/%+ n(l - e)\/%+ en -1

27



(e, 0)-3-Set Packing

(e, 0)-3-Set Packing:
© Input: Set System (U, 6), € C ([g])
© Completeness: There are 1/3 pairwise disjoint subsets in 6

© Soundness: There are at most (1 — ¢)n/3 pairwise disjoint subsets
in € and every set cover must be of size at least (1 + 6)n/3
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Our result on DST

Theorem (Fleischmann—Gavva—K’'23)

Assuming (¢, 6)-3-Set Packing is NP-hard, we have that DST in
{,-metric is NP-hard to approximate to (1 + ) factor, where

0/4 ifp = oo
(1 - 31/;7) +26 (231/!’ - %) ifp > 1/10g3(4/3)
yi=¢e/8 if p = 1/log,(4/3) ~ 3.8
€/26 ifp=2
>0 ifpe(l,2)u (2, —10g3}4/3))
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Proof Sketch of inapproximability of CST in {,-metric

Theorem (Fleischmann—Gavva—K’'23)

There is a poly time reduction from a graph G on n vertices to an
instance of CST in the f,-metric such that the optimal cost of the
Steiner tree is (n + x(G))/2.
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Proof Sketch of inapproximability of CST in {,-metric

Theorem (Fleischmann—Gavva—K’'23)

There is a poly time reduction from a graph G on n vertices to an
instance of CST in the f,-metric such that the optimal cost of the
Steiner tree is (n + x(G))/2.

© We embed each vertex as point in RI¥! such that:

o Two vertices are adjacent = distance is 2
o Two vertices are non-adjacent = distance is 1

© There is a Steiner point at distance 0.5 from all points in each
color class and max-norm 0.5

© All Steiner points are connected to 0

©® Cost of Tree=0.5-n+0.5- x(G)
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CYRELCEWETE

© Ruling out PTAS for Euclidean CST is still open!
© No PTAS for DST in t’p—metrics
© No PTAS for CST in {.-metric

© DST is at least as hard as CST

© At the heart of Steiner Tree Computation lies:

o 3-Set Cover
o 3-Set Packing
o n/3-Chromatic number
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