
New Arenas in
Hardness Amplification

Karthik C. S.
(Weizmann Institute of Science)

Joint work with

Elazar Goldenberg
(The Academic College of Tel Aviv-Yaffo)

Necessity is the Mother of Invention

} Average Case Complexity

◦ Hardness of Problems in Practice

} Modern Cryptography

◦ Hard on average function in NP

Modest Goal: Hardness Amplification

Mild average case⇒ Sharp average case

1

Necessity is the Mother of Invention

} Average Case Complexity

◦ Hardness of Problems in Practice

} Modern Cryptography

◦ Hard on average function in NP

Modest Goal: Hardness Amplification

Mild average case⇒ Sharp average case

1

Necessity is the Mother of Invention

} Average Case Complexity

◦ Hardness of Problems in Practice

} Modern Cryptography

◦ Hard on average function in NP

Modest Goal: Hardness Amplification

Mild average case⇒ Sharp average case

1

Necessity is the Mother of Invention

} Average Case Complexity

◦ Hardness of Problems in Practice

} Modern Cryptography

◦ Hard on average function in NP

Modest Goal: Hardness Amplification

Mild average case⇒ Sharp average case

1

Necessity is the Mother of Invention

} Average Case Complexity

◦ Hardness of Problems in Practice

} Modern Cryptography

◦ Hard on average function in NP

Modest Goal: Hardness Amplification

Mild average case⇒ Sharp average case

1

Necessity is the Mother of Invention

} Average Case Complexity

◦ Hardness of Problems in Practice

} Modern Cryptography

◦ Hard on average function in NP

Modest Goal:

Hardness Amplification

Mild average case⇒ Sharp average case

1

Necessity is the Mother of Invention

} Average Case Complexity

◦ Hardness of Problems in Practice

} Modern Cryptography

◦ Hard on average function in NP

Modest Goal: Hardness Amplification

Mild average case⇒ Sharp average case

1

Necessity is the Mother of Invention

} Average Case Complexity

◦ Hardness of Problems in Practice

} Modern Cryptography

◦ Hard on average function in NP

Modest Goal: Hardness Amplification

Mild average case⇒ Sharp average case

1

The Utopic Theorem of Hardness Amplification

} Family of functions { fn}n∈N

} Every algorithm A running in time t(n),
fails on p(n) fraction of inputs

} Family of functions {gn}n∈N

} Every algorithm A′ running in time t′(n),
fails on p′(n) fraction of inputs

�
⇒ • p′(n) � p(n)

• fn � gn

• f is “interesting”

2

The Utopic Theorem of Hardness Amplification

} Family of functions { fn}n∈N

} Every algorithm A running in time t(n),
fails on p(n) fraction of inputs

} Family of functions {gn}n∈N

} Every algorithm A′ running in time t′(n),
fails on p′(n) fraction of inputs

�
⇒ • p′(n) � p(n)

• fn � gn

• f is “interesting”

2

The Utopic Theorem of Hardness Amplification

} Family of functions { fn}n∈N

} Every algorithm A running in time t(n),
fails on p(n) fraction of inputs

} Family of functions {gn}n∈N

} Every algorithm A′ running in time t′(n),
fails on p′(n) fraction of inputs

�
⇒

• p′(n) � p(n)
• fn � gn

• f is “interesting”

2

The Utopic Theorem of Hardness Amplification

} Family of functions { fn}n∈N

} Every algorithm A running in time t(n),
fails on p(n) fraction of inputs

} Family of functions {gn}n∈N

} Every algorithm A′ running in time t′(n),
fails on p′(n) fraction of inputs

�
⇒

• p′(n) � p(n)
• fn � gn

• f is “interesting”

2

The Utopic Theorem of Hardness Amplification

} Family of functions { fn}n∈N

} Every algorithm A running in time t(n),
fails on p(n) fraction of inputs

} Family of functions {gn}n∈N

} Every algorithm A′ running in time t′(n),
fails on p′(n) fraction of inputs

�
⇒

• p′(n) � p(n)
• fn � gn

• f is “interesting”

2

The Utopic Theorem of Hardness Amplification

} Family of functions { fn}n∈N

} Every algorithm A running in time t(n),
fails on p(n) fraction of inputs

} Family of functions {gn}n∈N

} Every algorithm A′ running in time t′(n),
fails on p′(n) fraction of inputs

�
⇒ • p′(n) � p(n)

• fn � gn

• f is “interesting”

2

The Utopic Theorem of Hardness Amplification

} Family of functions { fn}n∈N

} Every algorithm A running in time t(n),
fails on p(n) fraction of inputs

} Family of functions {gn}n∈N

} Every algorithm A′ running in time t′(n),
fails on p′(n) fraction of inputs

�
⇒ • p′(n) � p(n)

• fn � gn

• f is “interesting”

2

The Utopic Theorem of Hardness Amplification

} Family of functions { fn}n∈N

} Every algorithm A running in time t(n),
fails on p(n) fraction of inputs

} Family of functions {gn}n∈N

} Every algorithm A′ running in time t′(n),
fails on p′(n) fraction of inputs

�
⇒ • p′(n) � p(n)

• fn � gn

• f is “interesting”

2

The Big Question

Can we do hardness amplification

for problems
we care about and

we believe are hard on average?

3

The Big Question

Can we do hardness amplification
for problems

we care about and
we believe are hard on average?

3

The Big Question

Can we do hardness amplification
for problems

we care about and

we believe are hard on average?

3

The Big Question

Can we do hardness amplification
for problems

we care about and
we believe are hard on average?

3

The Story so far

} #P (Lipton’89):

If Permanent can be computed:

◦ deterministically in polynomial time
◦ on 1/2 the matrices

then Permanent is in BPP.

} EXP (Trevisan-Vadhan’07):If ∃Π ∈EXP:

◦ cannot be efficiently solved in the worst case by
◦ uniform probabilistic algorithms

then ∃Λ ∈EXP:

◦ cannot be efficiently solved on random instances
◦ noticeably better than guessing the answer at random.

4

The Story so far

} #P (Lipton’89): If Permanent can be computed:

◦ deterministically in polynomial time
◦ on 1/2 the matrices

then Permanent is in BPP.

} EXP (Trevisan-Vadhan’07):If ∃Π ∈EXP:

◦ cannot be efficiently solved in the worst case by
◦ uniform probabilistic algorithms

then ∃Λ ∈EXP:

◦ cannot be efficiently solved on random instances
◦ noticeably better than guessing the answer at random.

4

The Story so far

} #P (Lipton’89): If Permanent can be computed:

◦ deterministically in polynomial time
◦ on 1/2 the matrices

then Permanent is in BPP.

} EXP (Trevisan-Vadhan’07):If ∃Π ∈EXP:

◦ cannot be efficiently solved in the worst case by
◦ uniform probabilistic algorithms

then ∃Λ ∈EXP:

◦ cannot be efficiently solved on random instances
◦ noticeably better than guessing the answer at random.

4

The Story so far

} #P (Lipton’89): If Permanent can be computed:

◦ deterministically in polynomial time
◦ on 1/2 the matrices

then Permanent is in BPP.

} EXP (Trevisan-Vadhan’07):

If ∃Π ∈EXP:

◦ cannot be efficiently solved in the worst case by
◦ uniform probabilistic algorithms

then ∃Λ ∈EXP:

◦ cannot be efficiently solved on random instances
◦ noticeably better than guessing the answer at random.

4

The Story so far

} #P (Lipton’89): If Permanent can be computed:

◦ deterministically in polynomial time
◦ on 1/2 the matrices

then Permanent is in BPP.

} EXP (Trevisan-Vadhan’07):If ∃Π ∈EXP:

◦ cannot be efficiently solved in the worst case by
◦ uniform probabilistic algorithms

then ∃Λ ∈EXP:

◦ cannot be efficiently solved on random instances
◦ noticeably better than guessing the answer at random.

4

The Story so far

} #P (Lipton’89): If Permanent can be computed:

◦ deterministically in polynomial time
◦ on 1/2 the matrices

then Permanent is in BPP.

} EXP (Trevisan-Vadhan’07):If ∃Π ∈EXP:

◦ cannot be efficiently solved in the worst case by
◦ uniform probabilistic algorithms

then ∃Λ ∈EXP:

◦ cannot be efficiently solved on random instances
◦ noticeably better than guessing the answer at random.

4

What about NP?

} Non-uniform case (Healy-Vadhan-Viola’04):

If ∃ f in NP

◦ circuits of size s(n) fails to compute f
◦ on 1/poly(n) fraction of inputs,

then ∃ f ′ in NP

◦ circuits of size s′(n) � s(√n)Ω(1) fails to compute f ′

◦ on 1/2 − 1/s′(n) fraction of inputs.

} Uniform case (Trevisan’05):If every problem in NP

◦ admits an efficient uniform algorithm
◦ succeeds with probability at least 1/2 + 1/(log n)O(1)

then for every problem in NP

◦ there is an efficient uniform algorithm
◦ succeeds with probability at least 1 − 1/poly(n)

5

What about NP?

} Non-uniform case (Healy-Vadhan-Viola’04):If ∃ f in NP

◦ circuits of size s(n) fails to compute f
◦ on 1/poly(n) fraction of inputs,

then ∃ f ′ in NP

◦ circuits of size s′(n) � s(√n)Ω(1) fails to compute f ′

◦ on 1/2 − 1/s′(n) fraction of inputs.

} Uniform case (Trevisan’05):If every problem in NP

◦ admits an efficient uniform algorithm
◦ succeeds with probability at least 1/2 + 1/(log n)O(1)

then for every problem in NP

◦ there is an efficient uniform algorithm
◦ succeeds with probability at least 1 − 1/poly(n)

5

What about NP?

} Non-uniform case (Healy-Vadhan-Viola’04):If ∃ f in NP

◦ circuits of size s(n) fails to compute f
◦ on 1/poly(n) fraction of inputs,

then ∃ f ′ in NP

◦ circuits of size s′(n) � s(√n)Ω(1) fails to compute f ′

◦ on 1/2 − 1/s′(n) fraction of inputs.

} Uniform case (Trevisan’05):If every problem in NP

◦ admits an efficient uniform algorithm
◦ succeeds with probability at least 1/2 + 1/(log n)O(1)

then for every problem in NP

◦ there is an efficient uniform algorithm
◦ succeeds with probability at least 1 − 1/poly(n)

5

What about NP?

} Non-uniform case (Healy-Vadhan-Viola’04):If ∃ f in NP

◦ circuits of size s(n) fails to compute f
◦ on 1/poly(n) fraction of inputs,

then ∃ f ′ in NP

◦ circuits of size s′(n) � s(√n)Ω(1) fails to compute f ′

◦ on 1/2 − 1/s′(n) fraction of inputs.

} Uniform case (Trevisan’05):

If every problem in NP

◦ admits an efficient uniform algorithm
◦ succeeds with probability at least 1/2 + 1/(log n)O(1)

then for every problem in NP

◦ there is an efficient uniform algorithm
◦ succeeds with probability at least 1 − 1/poly(n)

5

What about NP?

} Non-uniform case (Healy-Vadhan-Viola’04):If ∃ f in NP

◦ circuits of size s(n) fails to compute f
◦ on 1/poly(n) fraction of inputs,

then ∃ f ′ in NP

◦ circuits of size s′(n) � s(√n)Ω(1) fails to compute f ′

◦ on 1/2 − 1/s′(n) fraction of inputs.

} Uniform case (Trevisan’05):If every problem in NP

◦ admits an efficient uniform algorithm
◦ succeeds with probability at least 1/2 + 1/(log n)O(1)

then for every problem in NP

◦ there is an efficient uniform algorithm
◦ succeeds with probability at least 1 − 1/poly(n)

5

What about NP?

} Non-uniform case (Healy-Vadhan-Viola’04):If ∃ f in NP

◦ circuits of size s(n) fails to compute f
◦ on 1/poly(n) fraction of inputs,

then ∃ f ′ in NP

◦ circuits of size s′(n) � s(√n)Ω(1) fails to compute f ′

◦ on 1/2 − 1/s′(n) fraction of inputs.

} Uniform case (Trevisan’05):If every problem in NP

◦ admits an efficient uniform algorithm
◦ succeeds with probability at least 1/2 + 1/(log n)O(1)

then for every problem in NP

◦ there is an efficient uniform algorithm
◦ succeeds with probability at least 1 − 1/poly(n)

5

Arenas in Hardness Amplification

The Verona, Pompeii, Flavian, and Fiesole arenas
may not be as well known as the Colosseum,

but are just as impressive.

− Roman history trivia

6

Arenas in Hardness Amplification

NP

P Optimization
Problems

EXP#P

7

Arenas in Hardness Amplification

NP

P Optimization
Problems

EXP#P

7

Arenas in Hardness Amplification

NP

P

Optimization
Problems

EXP#P

7

Arenas in Hardness Amplification

NP

P Optimization
Problems

EXP#P

7

Focus of this Talk

Optimization Problems

} NP-hard problems

} Subquadratic-hard problems

} Total Problems

8

Focus of this Talk

Optimization Problems

} NP-hard problems

} Subquadratic-hard problems

} Total Problems

8

Focus of this Talk

Optimization Problems

} NP-hard problems

} Subquadratic-hard problems

} Total Problems

8

Focus of this Talk

Optimization Problems

} NP-hard problems

} Subquadratic-hard problems

} Total Problems

8

Maximum Clique

Input: A graph G

Output: Clique of maximum size in G

9

Maximum Clique

Input: A graph G

Output: Clique of maximum size in G

9

Maximum Clique

Input: A graph G

Output: Clique of maximum size in G

9

Maximum Clique

Input: A graph G

Output: Clique of maximum size in G

9

Maximum Clique

Input: A graph G

Output: Clique of maximum size in G

9

Our Result for Maximum Clique

Theorem (Goldenberg-K’19)

Let D be poly(n) time samplable distribution over graphs on n
vertices

such that for every randomized algorithm A running in
time poly(n), we have:

Pr
G∼D

�
Afinds max-clique in G w.p. ≥ 2/3

�
≤ 1 − 1/n.

Then there is D′ a poly(n) time samplable distribution over graphs
on poly(n) vertices such that for every randomized algorithm A′

running in time poly(n), we have:

Pr
G′∼D′

�
A′ finds max-clique in G′ w.p. ≥ 2/3

�
≤ 0.01.

10

Our Result for Maximum Clique

Theorem (Goldenberg-K’19)

Let D be poly(n) time samplable distribution over graphs on n
vertices such that for every randomized algorithm A running in
time poly(n),

we have:

Pr
G∼D

�
Afinds max-clique in G w.p. ≥ 2/3

�
≤ 1 − 1/n.

Then there is D′ a poly(n) time samplable distribution over graphs
on poly(n) vertices such that for every randomized algorithm A′

running in time poly(n), we have:

Pr
G′∼D′

�
A′ finds max-clique in G′ w.p. ≥ 2/3

�
≤ 0.01.

10

Our Result for Maximum Clique

Theorem (Goldenberg-K’19)

Let D be poly(n) time samplable distribution over graphs on n
vertices such that for every randomized algorithm A running in
time poly(n), we have:

Pr
G∼D

�
Afinds max-clique in G w.p. ≥ 2/3

�
≤ 1 − 1/n.

Then there is D′ a poly(n) time samplable distribution over graphs
on poly(n) vertices such that for every randomized algorithm A′

running in time poly(n), we have:

Pr
G′∼D′

�
A′ finds max-clique in G′ w.p. ≥ 2/3

�
≤ 0.01.

10

Our Result for Maximum Clique

Theorem (Goldenberg-K’19)

Let D be poly(n) time samplable distribution over graphs on n
vertices such that for every randomized algorithm A running in
time poly(n), we have:

Pr
G∼D

�
Afinds max-clique in G w.p. ≥ 2/3

�
≤ 1 − 1/n.

Then there is D′ a poly(n) time samplable distribution over graphs
on poly(n) vertices

such that for every randomized algorithm A′

running in time poly(n), we have:

Pr
G′∼D′

�
A′ finds max-clique in G′ w.p. ≥ 2/3

�
≤ 0.01.

10

Our Result for Maximum Clique

Theorem (Goldenberg-K’19)

Let D be poly(n) time samplable distribution over graphs on n
vertices such that for every randomized algorithm A running in
time poly(n), we have:

Pr
G∼D

�
Afinds max-clique in G w.p. ≥ 2/3

�
≤ 1 − 1/n.

Then there is D′ a poly(n) time samplable distribution over graphs
on poly(n) vertices such that for every randomized algorithm A′

running in time poly(n),

we have:

Pr
G′∼D′

�
A′ finds max-clique in G′ w.p. ≥ 2/3

�
≤ 0.01.

10

Our Result for Maximum Clique

Theorem (Goldenberg-K’19)

Let D be poly(n) time samplable distribution over graphs on n
vertices such that for every randomized algorithm A running in
time poly(n), we have:

Pr
G∼D

�
Afinds max-clique in G w.p. ≥ 2/3

�
≤ 1 − 1/n.

Then there is D′ a poly(n) time samplable distribution over graphs
on poly(n) vertices such that for every randomized algorithm A′

running in time poly(n), we have:

Pr
G′∼D′

�
A′ finds max-clique in G′ w.p. ≥ 2/3

�
≤ 0.01.

10

Proof Overview

1. Define new distribution D′

2. Given A′ for D′ design A for D

3. Argue that if A′ is correct on 0.01 fraction of inputs

then A is correct on 1 − 1/n fraction of inputs

11

Proof Overview

1. Define new distribution D′

2. Given A′ for D′ design A for D

3. Argue that if A′ is correct on 0.01 fraction of inputs

then A is correct on 1 − 1/n fraction of inputs

11

Proof Overview

1. Define new distribution D′

2. Given A′ for D′ design A for D

3. Argue that if A′ is correct on 0.01 fraction of inputs

then A is correct on 1 − 1/n fraction of inputs

11

Proof Overview

1. Define new distribution D′

2. Given A′ for D′ design A for D

3. Argue that if A′ is correct on 0.01 fraction of inputs

then A is correct on 1 − 1/n fraction of inputs

11

Construction of New Distribution

D′ samples a graph H as follows:

1. Independently sample G1 , . . . ,Gk from D (k :�poly(n))
2. Define H :� G1∪̇ · · · ∪̇Gk

3. For every i , j insert every edge between Gi and G j

4. Output H

Sampling time: poly(n)

12

Construction of New Distribution

D′ samples a graph H as follows:

1. Independently sample G1 , . . . ,Gk from D (k :�poly(n))

2. Define H :� G1∪̇ · · · ∪̇Gk

3. For every i , j insert every edge between Gi and G j

4. Output H

Sampling time: poly(n)

12

Construction of New Distribution

D′ samples a graph H as follows:

1. Independently sample G1 , . . . ,Gk from D (k :�poly(n))
2. Define H :� G1∪̇ · · · ∪̇Gk

3. For every i , j insert every edge between Gi and G j

4. Output H

Sampling time: poly(n)

12

Construction of New Distribution

D′ samples a graph H as follows:

1. Independently sample G1 , . . . ,Gk from D (k :�poly(n))
2. Define H :� G1∪̇ · · · ∪̇Gk

3. For every i , j insert every edge between Gi and G j

4. Output H

Sampling time: poly(n)

12

Construction of New Distribution

D′ samples a graph H as follows:

1. Independently sample G1 , . . . ,Gk from D (k :�poly(n))
2. Define H :� G1∪̇ · · · ∪̇Gk

3. For every i , j insert every edge between Gi and G j

4. Output H

Sampling time: poly(n)

12

Construction of New Distribution

D′ samples a graph H as follows:

1. Independently sample G1 , . . . ,Gk from D (k :�poly(n))
2. Define H :� G1∪̇ · · · ∪̇Gk

3. For every i , j insert every edge between Gi and G j

4. Output H

Sampling time: poly(n)

12

Algorithm for Original Distribution

Algorithm A

Input: A graph G sampled from D

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.

2.1 Pick randomly i ∈ [k]
2.2 Independently sample G1 , . . . ,Gi−1 ,Gi+1 , . . .Gk from D

2.3 Construct H setting Gi to be G

2.4 Find clique in H using A′

2.5 Restrict clique in H to G and add to Solution

3. Output the largest clique in Solution

13

Algorithm for Original Distribution

Algorithm A

Input: A graph G sampled from D

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.

2.1 Pick randomly i ∈ [k]
2.2 Independently sample G1 , . . . ,Gi−1 ,Gi+1 , . . .Gk from D

2.3 Construct H setting Gi to be G

2.4 Find clique in H using A′

2.5 Restrict clique in H to G and add to Solution

3. Output the largest clique in Solution

13

Algorithm for Original Distribution

Algorithm A

Input: A graph G sampled from D

Output: A maximum clique in G

1. Set Solution to be empty.

2. Repeat following O(1) times.
2.1 Pick randomly i ∈ [k]
2.2 Independently sample G1 , . . . ,Gi−1 ,Gi+1 , . . .Gk from D

2.3 Construct H setting Gi to be G

2.4 Find clique in H using A′

2.5 Restrict clique in H to G and add to Solution

3. Output the largest clique in Solution

13

Algorithm for Original Distribution

Algorithm A

Input: A graph G sampled from D

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.

2.1 Pick randomly i ∈ [k]
2.2 Independently sample G1 , . . . ,Gi−1 ,Gi+1 , . . .Gk from D

2.3 Construct H setting Gi to be G

2.4 Find clique in H using A′

2.5 Restrict clique in H to G and add to Solution

3. Output the largest clique in Solution

13

Algorithm for Original Distribution

Algorithm A

Input: A graph G sampled from D

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.

2.1 Pick randomly i ∈ [k]

2.2 Independently sample G1 , . . . ,Gi−1 ,Gi+1 , . . .Gk from D

2.3 Construct H setting Gi to be G

2.4 Find clique in H using A′

2.5 Restrict clique in H to G and add to Solution

3. Output the largest clique in Solution

13

Algorithm for Original Distribution

Algorithm A

Input: A graph G sampled from D

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.

2.1 Pick randomly i ∈ [k]
2.2 Independently sample G1 , . . . ,Gi−1 ,Gi+1 , . . .Gk from D

2.3 Construct H setting Gi to be G

2.4 Find clique in H using A′

2.5 Restrict clique in H to G and add to Solution

3. Output the largest clique in Solution

13

Algorithm for Original Distribution

Algorithm A

Input: A graph G sampled from D

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.

2.1 Pick randomly i ∈ [k]
2.2 Independently sample G1 , . . . ,Gi−1 ,Gi+1 , . . .Gk from D

2.3 Construct H setting Gi to be G

2.4 Find clique in H using A′

2.5 Restrict clique in H to G and add to Solution

3. Output the largest clique in Solution

13

Algorithm for Original Distribution

Algorithm A

Input: A graph G sampled from D

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.

2.1 Pick randomly i ∈ [k]
2.2 Independently sample G1 , . . . ,Gi−1 ,Gi+1 , . . .Gk from D

2.3 Construct H setting Gi to be G

2.4 Find clique in H using A′

2.5 Restrict clique in H to G and add to Solution

3. Output the largest clique in Solution

13

Algorithm for Original Distribution

Algorithm A

Input: A graph G sampled from D

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.

2.1 Pick randomly i ∈ [k]
2.2 Independently sample G1 , . . . ,Gi−1 ,Gi+1 , . . .Gk from D

2.3 Construct H setting Gi to be G

2.4 Find clique in H using A′

2.5 Restrict clique in H to G and add to Solution

3. Output the largest clique in Solution

13

Algorithm for Original Distribution

Algorithm A

Input: A graph G sampled from D

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.

2.1 Pick randomly i ∈ [k]
2.2 Independently sample G1 , . . . ,Gi−1 ,Gi+1 , . . .Gk from D

2.3 Construct H setting Gi to be G

2.4 Find clique in H using A′

2.5 Restrict clique in H to G and add to Solution

3. Output the largest clique in Solution

13

Structure of Optimal Solutions

Claim
If S is a maximum clique of H then for any i ∈ [k] its
restriction to vertices of Gi gives a maximum clique of Gi .

14

Correctness of Algorithm

} A0 be one iteration of Step 2 of A

} If A0 outputs maximum clique w.p. ε on 1 − 1/n fraction of
samples from D then,

Aoutputs maximum clique w.p. 2/3 on 1 − 1/n fraction of
samples from D.

} Suffices to show: A′ outputs maximum clique in Step 2.5
w.p. ε on 1 − 1/n fraction of samples from D.

15

Correctness of Algorithm

} A0 be one iteration of Step 2 of A

} If A0 outputs maximum clique w.p. ε on 1 − 1/n fraction of
samples from D then,

Aoutputs maximum clique w.p. 2/3 on 1 − 1/n fraction of
samples from D.

} Suffices to show: A′ outputs maximum clique in Step 2.5
w.p. ε on 1 − 1/n fraction of samples from D.

15

Correctness of Algorithm

} A0 be one iteration of Step 2 of A

} If A0 outputs maximum clique w.p. ε on 1 − 1/n fraction of
samples from D then,

Aoutputs maximum clique w.p. 2/3 on 1 − 1/n fraction of
samples from D.

} Suffices to show: A′ outputs maximum clique in Step 2.5
w.p. ε on 1 − 1/n fraction of samples from D.

15

Correctness of Algorithm

} A0 be one iteration of Step 2 of A

} If A0 outputs maximum clique w.p. ε on 1 − 1/n fraction of
samples from D then,

Aoutputs maximum clique w.p. 2/3 on 1 − 1/n fraction of
samples from D.

} Suffices to show: A′ outputs maximum clique in Step 2.5
w.p. ε on 1 − 1/n fraction of samples from D.

15

A Direct Product Lemma

Lemma (Feige-Kilian’94)
Let Tbe a distribution over X. Let f : Xk

→ {0, 1}. Then,

Pr
x∼T
i∈[k]

�|µi ,x − µ| ≥ k−1/3
�
≤ k−1/3 ,

where
µ � E

xk∼Tk

[
f
(
xk
)]
,

µi ,x � E
x1 ,...,xi−1 ,xi+1 ,...,xk∼T

�
f (x1 , . . . , xi−1 , x , xi+1 , . . . xk)� .

f (xk) � 1⇐⇒ A′ outputs maximum clique w.p. 2/3

16

A Direct Product Lemma

Lemma (Feige-Kilian’94)
Let Tbe a distribution over X. Let f : Xk

→ {0, 1}.

Then,

Pr
x∼T
i∈[k]

�|µi ,x − µ| ≥ k−1/3
�
≤ k−1/3 ,

where
µ � E

xk∼Tk

[
f
(
xk
)]
,

µi ,x � E
x1 ,...,xi−1 ,xi+1 ,...,xk∼T

�
f (x1 , . . . , xi−1 , x , xi+1 , . . . xk)� .

f (xk) � 1⇐⇒ A′ outputs maximum clique w.p. 2/3

16

A Direct Product Lemma

Lemma (Feige-Kilian’94)
Let Tbe a distribution over X. Let f : Xk

→ {0, 1}. Then,

Pr
x∼T
i∈[k]

�|µi ,x − µ| ≥ k−1/3
�
≤ k−1/3 ,

where
µ � E

xk∼Tk

[
f
(
xk
)]
,

µi ,x � E
x1 ,...,xi−1 ,xi+1 ,...,xk∼T

�
f (x1 , . . . , xi−1 , x , xi+1 , . . . xk)� .

f (xk) � 1⇐⇒ A′ outputs maximum clique w.p. 2/3

16

A Direct Product Lemma

Lemma (Feige-Kilian’94)
Let Tbe a distribution over X. Let f : Xk

→ {0, 1}. Then,

Pr
x∼T
i∈[k]

�|µi ,x − µ| ≥ k−1/3
�
≤ k−1/3 ,

where
µ � E

xk∼Tk

[
f
(
xk
)]
,

µi ,x � E
x1 ,...,xi−1 ,xi+1 ,...,xk∼T

�
f (x1 , . . . , xi−1 , x , xi+1 , . . . xk)� .

f (xk) � 1⇐⇒ A′ outputs maximum clique w.p. 2/3

16

A Direct Product Lemma

Lemma (Feige-Kilian’94)
Let Tbe a distribution over X. Let f : Xk

→ {0, 1}. Then,

Pr
x∼T
i∈[k]

�|µi ,x − µ| ≥ k−1/3
�
≤ k−1/3 ,

where
µ � E

xk∼Tk

[
f
(
xk
)]
,

µi ,x � E
x1 ,...,xi−1 ,xi+1 ,...,xk∼T

�
f (x1 , . . . , xi−1 , x , xi+1 , . . . xk)� .

f (xk) � 1⇐⇒ A′ outputs maximum clique w.p. 2/3

16

A Direct Product Lemma

Lemma (Feige-Kilian’94)
Let Tbe a distribution over X. Let f : Xk

→ {0, 1}. Then,

Pr
x∼T
i∈[k]

�|µi ,x − µ| ≥ k−1/3
�
≤ k−1/3 ,

where
µ � E

xk∼Tk

[
f
(
xk
)]
,

µi ,x � E
x1 ,...,xi−1 ,xi+1 ,...,xk∼T

�
f (x1 , . . . , xi−1 , x , xi+1 , . . . xk)� .

f (xk) � 1⇐⇒ A′ outputs maximum clique w.p. 2/3

16

Proof Summary

} New Distribution: Direct Product of Old Distribution with
solution preserving property

} Invoke Feige-Kilian lemma to show amplification of
hardness

17

Proof Summary

} New Distribution: Direct Product of Old Distribution with
solution preserving property

} Invoke Feige-Kilian lemma to show amplification of
hardness

17

Proof Summary

} New Distribution: Direct Product of Old Distribution with
solution preserving property

} Invoke Feige-Kilian lemma to show amplification of
hardness

17

Hardness Amplification for Optimization Problems

An optimization problem Π is the quadruple (IΠ ,SolΠ ,∆Π , goalΠ):

} IΠ: set of instances of Π;

} SolΠ: function from IΠ to set of feasible solutions;

} ∆Π: assigns (x ∈ IΠ , y ∈ SolΠ(x)) a non-negative integer;
} goalΠ ∈ {min,max}.

18

Hardness Amplification for Optimization Problems

An optimization problem Π is the quadruple (IΠ ,SolΠ ,∆Π , goalΠ):

} IΠ: set of instances of Π;

} SolΠ: function from IΠ to set of feasible solutions;

} ∆Π: assigns (x ∈ IΠ , y ∈ SolΠ(x)) a non-negative integer;
} goalΠ ∈ {min,max}.

18

Hardness Amplification for Optimization Problems

An optimization problem Π is the quadruple (IΠ ,SolΠ ,∆Π , goalΠ):

} IΠ: set of instances of Π;

} SolΠ: function from IΠ to set of feasible solutions;

} ∆Π: assigns (x ∈ IΠ , y ∈ SolΠ(x)) a non-negative integer;
} goalΠ ∈ {min,max}.

18

Hardness Amplification for Optimization Problems

An optimization problem Π is the quadruple (IΠ ,SolΠ ,∆Π , goalΠ):

} IΠ: set of instances of Π;

} SolΠ: function from IΠ to set of feasible solutions;

} ∆Π: assigns (x ∈ IΠ , y ∈ SolΠ(x)) a non-negative integer;
} goalΠ ∈ {min,max}.

18

Hardness Amplification for Optimization Problems

An optimization problem Π is the quadruple (IΠ ,SolΠ ,∆Π , goalΠ):

} IΠ: set of instances of Π;

} SolΠ: function from IΠ to set of feasible solutions;

} ∆Π: assigns (x ∈ IΠ , y ∈ SolΠ(x)) a non-negative integer;

} goalΠ ∈ {min,max}.

18

Hardness Amplification for Optimization Problems

An optimization problem Π is the quadruple (IΠ ,SolΠ ,∆Π , goalΠ):

} IΠ: set of instances of Π;

} SolΠ: function from IΠ to set of feasible solutions;

} ∆Π: assigns (x ∈ IΠ , y ∈ SolΠ(x)) a non-negative integer;
} goalΠ ∈ {min,max}.

18

Direct Product Feasibility

Let S, T : N × N→ N.

We say Π(IΠ ,SolΠ ,∆Π , goalΠ) is (S, T)-direct product feasible
if there exists deterministic (Gen,Dec) :

} Gen:

◦ Input: x1 , . . . , xk ∈ IΠ(n)
◦ Output: x′ ∈ IΠ(S(n , k))

} Dec:

◦ Input: i ∈ [k], x1 , . . . , xk ∈ IΠ(n), and optimal y′ ∈ SolΠ(x′)
◦ Output: optimal y ∈ SolΠ(xi)

} Gen and Dec run in T(n , k) time.

19

Direct Product Feasibility

Let S, T : N × N→ N.

We say Π(IΠ ,SolΠ ,∆Π , goalΠ) is (S, T)-direct product feasible

if there exists deterministic (Gen,Dec) :

} Gen:

◦ Input: x1 , . . . , xk ∈ IΠ(n)
◦ Output: x′ ∈ IΠ(S(n , k))

} Dec:

◦ Input: i ∈ [k], x1 , . . . , xk ∈ IΠ(n), and optimal y′ ∈ SolΠ(x′)
◦ Output: optimal y ∈ SolΠ(xi)

} Gen and Dec run in T(n , k) time.

19

Direct Product Feasibility

Let S, T : N × N→ N.

We say Π(IΠ ,SolΠ ,∆Π , goalΠ) is (S, T)-direct product feasible
if there exists deterministic (Gen,Dec) :

} Gen:

◦ Input: x1 , . . . , xk ∈ IΠ(n)
◦ Output: x′ ∈ IΠ(S(n , k))

} Dec:

◦ Input: i ∈ [k], x1 , . . . , xk ∈ IΠ(n), and optimal y′ ∈ SolΠ(x′)
◦ Output: optimal y ∈ SolΠ(xi)

} Gen and Dec run in T(n , k) time.

19

Direct Product Feasibility

Let S, T : N × N→ N.

We say Π(IΠ ,SolΠ ,∆Π , goalΠ) is (S, T)-direct product feasible
if there exists deterministic (Gen,Dec) :

} Gen:

◦ Input: x1 , . . . , xk ∈ IΠ(n)
◦ Output: x′ ∈ IΠ(S(n , k))

} Dec:

◦ Input: i ∈ [k], x1 , . . . , xk ∈ IΠ(n), and optimal y′ ∈ SolΠ(x′)
◦ Output: optimal y ∈ SolΠ(xi)

} Gen and Dec run in T(n , k) time.

19

Direct Product Feasibility

Let S, T : N × N→ N.

We say Π(IΠ ,SolΠ ,∆Π , goalΠ) is (S, T)-direct product feasible
if there exists deterministic (Gen,Dec) :

} Gen:

◦ Input: x1 , . . . , xk ∈ IΠ(n)
◦ Output: x′ ∈ IΠ(S(n , k))

} Dec:

◦ Input: i ∈ [k], x1 , . . . , xk ∈ IΠ(n), and optimal y′ ∈ SolΠ(x′)
◦ Output: optimal y ∈ SolΠ(xi)

} Gen and Dec run in T(n , k) time.

19

Direct Product Feasibility

Let S, T : N × N→ N.

We say Π(IΠ ,SolΠ ,∆Π , goalΠ) is (S, T)-direct product feasible
if there exists deterministic (Gen,Dec) :

} Gen:

◦ Input: x1 , . . . , xk ∈ IΠ(n)
◦ Output: x′ ∈ IΠ(S(n , k))

} Dec:

◦ Input: i ∈ [k], x1 , . . . , xk ∈ IΠ(n), and optimal y′ ∈ SolΠ(x′)
◦ Output: optimal y ∈ SolΠ(xi)

} Gen and Dec run in T(n , k) time.

19

Our General Result

Theorem (Goldenberg-K’19)

LetΠ be (S, T)-direct product feasible. Let D be s(n) time samplable
distribution over IΠ(n) such that for every randomized algorithm A

running in time t(n), we have:

Pr
x∼D

�
Afinds optimal solution of x w.p. ≥ 2/3

�
≤ 1 −

1
p(n) .

Then for k � poly(p(n)) there is D′ a Õ(k · s(n) + T(n , k)) time
samplable distribution over IΠ(S(n , k)) such that for every
randomized algorithm A′ running in time∗ Õ(t(n)), we have:

Pr
x′∼D′

�
A′ finds optimal solution of x′ w.p. ≥ 2/3

�
≤ 0.01.

∗Conditions apply.
20

Our General Result

Theorem (Goldenberg-K’19)

LetΠ be (S, T)-direct product feasible. Let D be s(n) time samplable
distribution over IΠ(n) such that for every randomized algorithm A

running in time t(n), we have:

Pr
x∼D

�
Afinds optimal solution of x w.p. ≥ 2/3

�
≤ 1 −

1
p(n) .

Then for k � poly(p(n)) there is D′ a Õ(k · s(n) + T(n , k)) time
samplable distribution over IΠ(S(n , k)) such that for every
randomized algorithm A′ running in time∗ Õ(t(n)), we have:

Pr
x′∼D′

�
A′ finds optimal solution of x′ w.p. ≥ 2/3

�
≤ 0.01.

∗Conditions apply.
20

Problems in P

Theorem (Goldenberg-K’19)

Let D be Õ(n) time samplable distribution over LCS/Edit Distance
such that for every randomized algorithm A running in time n2−ε,
we have:

Pr
x∼D

�
Afinds optimal alignment of x w.p. ≥ 2/3

�
≤ 1 − 1/no(1).

Then there is D′ a Õ(n) time samplable distribution over LCS/Edit
Distance such that for every randomized algorithm A′ running in
time n2−2ε, we have:

Pr
x′∼D′

�
A′ finds optimal alignment of x′ w.p. ≥ 2/3

�
≤ 0.01.

What about Fréchet Distance?

Hardness Amplification for

Matrix Multiplication

21

Problems in P

Theorem (Goldenberg-K’19)

Let D be Õ(n) time samplable distribution over LCS/Edit Distance
such that for every randomized algorithm A running in time n2−ε,
we have:

Pr
x∼D

�
Afinds optimal alignment of x w.p. ≥ 2/3

�
≤ 1 − 1/no(1).

Then there is D′ a Õ(n) time samplable distribution over LCS/Edit
Distance such that for every randomized algorithm A′ running in
time n2−2ε, we have:

Pr
x′∼D′

�
A′ finds optimal alignment of x′ w.p. ≥ 2/3

�
≤ 0.01.

What about Fréchet Distance?

Hardness Amplification for

Matrix Multiplication

21

Problems in P

Theorem (Goldenberg-K’19)

Let D be Õ(n) time samplable distribution over LCS/Edit Distance
such that for every randomized algorithm A running in time n2−ε,
we have:

Pr
x∼D

�
Afinds optimal alignment of x w.p. ≥ 2/3

�
≤ 1 − 1/no(1).

Then there is D′ a Õ(n) time samplable distribution over LCS/Edit
Distance such that for every randomized algorithm A′ running in
time n2−2ε, we have:

Pr
x′∼D′

�
A′ finds optimal alignment of x′ w.p. ≥ 2/3

�
≤ 0.01.

What about Fréchet Distance?

Hardness Amplification for

Matrix Multiplication

21

Problems in P

Theorem (Goldenberg-K’19)

Let D be Õ(n) time samplable distribution over LCS/Edit Distance
such that for every randomized algorithm A running in time n2−ε,
we have:

Pr
x∼D

�
Afinds optimal alignment of x w.p. ≥ 2/3

�
≤ 1 − 1/no(1).

Then there is D′ a Õ(n) time samplable distribution over LCS/Edit
Distance such that for every randomized algorithm A′ running in
time n2−2ε, we have:

Pr
x′∼D′

�
A′ finds optimal alignment of x′ w.p. ≥ 2/3

�
≤ 0.01.

What about Fréchet Distance?

Hardness Amplification for

Matrix Multiplication

21

Connection to Max-SAT

Theorem (Goldenberg-K’19)

Let D be poly(n) time samplable distribution over Max-SAT
such that for every randomized algorithm A running in time
2o(n), we have:

Pr
x∼D

�
Afinds optimal assignment of x w.p. ≥ 2/3

�
≤ 1 − 1/2n1−o(1) .

Then there is D′ a poly(n) time samplable distribution over
Max-SAT such that for every randomized algorithm A′

running in time nω(1), we have:

Pr
x′∼D′

�
A′ finds optimal assignment of x′ w.p. ≥ 2/3

�
≤ 0.01.

Can be extended to Vertex Cover,

Dominating Set, etc

Can even be extended to Knapsack,

and other maximization problems!

22

Connection to Max-SAT

Theorem (Goldenberg-K’19)

Let D be poly(n) time samplable distribution over Max-SAT
such that for every randomized algorithm A running in time
2o(n), we have:

Pr
x∼D

�
Afinds optimal assignment of x w.p. ≥ 2/3

�
≤ 1 − 1/2n1−o(1) .

Then there is D′ a poly(n) time samplable distribution over
Max-SAT such that for every randomized algorithm A′

running in time nω(1), we have:

Pr
x′∼D′

�
A′ finds optimal assignment of x′ w.p. ≥ 2/3

�
≤ 0.01.

Can be extended to Vertex Cover,

Dominating Set, etc

Can even be extended to Knapsack,

and other maximization problems!

22

Connection to Max-SAT

Theorem (Goldenberg-K’19)

Let D be poly(n) time samplable distribution over Max-SAT
such that for every randomized algorithm A running in time
2o(n), we have:

Pr
x∼D

�
Afinds optimal assignment of x w.p. ≥ 2/3

�
≤ 1 − 1/2n1−o(1) .

Then there is D′ a poly(n) time samplable distribution over
Max-SAT such that for every randomized algorithm A′

running in time nω(1), we have:

Pr
x′∼D′

�
A′ finds optimal assignment of x′ w.p. ≥ 2/3

�
≤ 0.01.

Can be extended to Vertex Cover,

Dominating Set, etc

Can even be extended to Knapsack,

and other maximization problems!

22

Connection to Max-SAT

Theorem (Goldenberg-K’19)

Let D be poly(n) time samplable distribution over Max-SAT
such that for every randomized algorithm A running in time
2o(n), we have:

Pr
x∼D

�
Afinds optimal assignment of x w.p. ≥ 2/3

�
≤ 1 − 1/2n1−o(1) .

Then there is D′ a poly(n) time samplable distribution over
Max-SAT such that for every randomized algorithm A′

running in time nω(1), we have:

Pr
x′∼D′

�
A′ finds optimal assignment of x′ w.p. ≥ 2/3

�
≤ 0.01.

Can be extended to Vertex Cover,

Dominating Set, etc

Can even be extended to Knapsack,

and other maximization problems!

22

Connection to TFNP

Factoring

} Given N ∈ [2n] find all its prime factors

} Gen multiplies input integers

} Dec checks if candidate prime divides input integer

End of Line Problem

} Given P, S : {0, 1}n
→ {0, 1}n such that P(0n) � 0n , S(0n)

} Find x such that P(S(x)) , x or S(P(x)) � x , 0n

} Gen concatenates input and output gates

} Dec restricts on the corresponding block

23

Connection to TFNP

Factoring

} Given N ∈ [2n] find all its prime factors

} Gen multiplies input integers

} Dec checks if candidate prime divides input integer

End of Line Problem

} Given P, S : {0, 1}n
→ {0, 1}n such that P(0n) � 0n , S(0n)

} Find x such that P(S(x)) , x or S(P(x)) � x , 0n

} Gen concatenates input and output gates

} Dec restricts on the corresponding block

23

Connection to TFNP

Factoring

} Given N ∈ [2n] find all its prime factors

} Gen multiplies input integers

} Dec checks if candidate prime divides input integer

End of Line Problem

} Given P, S : {0, 1}n
→ {0, 1}n such that P(0n) � 0n , S(0n)

} Find x such that P(S(x)) , x or S(P(x)) � x , 0n

} Gen concatenates input and output gates

} Dec restricts on the corresponding block

23

Connection to TFNP

Factoring

} Given N ∈ [2n] find all its prime factors

} Gen multiplies input integers

} Dec checks if candidate prime divides input integer

End of Line Problem

} Given P, S : {0, 1}n
→ {0, 1}n such that P(0n) � 0n , S(0n)

} Find x such that P(S(x)) , x or S(P(x)) � x , 0n

} Gen concatenates input and output gates

} Dec restricts on the corresponding block

23

Connection to TFNP

Factoring

} Given N ∈ [2n] find all its prime factors

} Gen multiplies input integers

} Dec checks if candidate prime divides input integer

End of Line Problem

} Given P, S : {0, 1}n
→ {0, 1}n such that P(0n) � 0n , S(0n)

} Find x such that P(S(x)) , x or S(P(x)) � x , 0n

} Gen concatenates input and output gates

} Dec restricts on the corresponding block

23

Connection to TFNP

Factoring

} Given N ∈ [2n] find all its prime factors

} Gen multiplies input integers

} Dec checks if candidate prime divides input integer

End of Line Problem

} Given P, S : {0, 1}n
→ {0, 1}n such that P(0n) � 0n , S(0n)

} Find x such that P(S(x)) , x or S(P(x)) � x , 0n

} Gen concatenates input and output gates

} Dec restricts on the corresponding block

23

Connection to TFNP

Factoring

} Given N ∈ [2n] find all its prime factors

} Gen multiplies input integers

} Dec checks if candidate prime divides input integer

End of Line Problem

} Given P, S : {0, 1}n
→ {0, 1}n such that P(0n) � 0n , S(0n)

} Find x such that P(S(x)) , x or S(P(x)) � x , 0n

} Gen concatenates input and output gates

} Dec restricts on the corresponding block

23

Connection to TFNP

Factoring

} Given N ∈ [2n] find all its prime factors

} Gen multiplies input integers

} Dec checks if candidate prime divides input integer

End of Line Problem

} Given P, S : {0, 1}n
→ {0, 1}n such that P(0n) � 0n , S(0n)

} Find x such that P(S(x)) , x or S(P(x)) � x , 0n

} Gen concatenates input and output gates

} Dec restricts on the corresponding block
23

Open Problem 1

Average case hard problems in P

} Can we show some natural problem in P is hard for the
uniform distribution?

} Can we construct a fine-grained one way function from
worst case assumptions?

24

Open Problem 1

Average case hard problems in P

} Can we show some natural problem in P is hard for the
uniform distribution?

} Can we construct a fine-grained one way function from
worst case assumptions?

24

Open Problem 1

Average case hard problems in P

} Can we show some natural problem in P is hard for the
uniform distribution?

} Can we construct a fine-grained one way function from
worst case assumptions?

24

Open Problem 2

Gap Amplification vs. Hardness Amplification

} Can we obtain a trade-off between gap and hardness?

} Can we say something stronger about Max-SAT assuming
Gap-ETH?

25

Open Problem 2

Gap Amplification vs. Hardness Amplification

} Can we obtain a trade-off between gap and hardness?

} Can we say something stronger about Max-SAT assuming
Gap-ETH?

25

Open Problem 2

Gap Amplification vs. Hardness Amplification

} Can we obtain a trade-off between gap and hardness?

} Can we say something stronger about Max-SAT assuming
Gap-ETH?

25

Open Problem 3

Direct Product Feasibility

} Can we characterize direct product feasible pairs?

} Can we show Orthogonal Vectors is self direct product
feasible?

} Can we show LCS is self direct product feasible?

26

Open Problem 3

Direct Product Feasibility

} Can we characterize direct product feasible pairs?

} Can we show Orthogonal Vectors is self direct product
feasible?

} Can we show LCS is self direct product feasible?

26

Open Problem 3

Direct Product Feasibility

} Can we characterize direct product feasible pairs?

} Can we show Orthogonal Vectors is self direct product
feasible?

} Can we show LCS is self direct product feasible?

26

Open Problem 3

Direct Product Feasibility

} Can we characterize direct product feasible pairs?

} Can we show Orthogonal Vectors is self direct product
feasible?

} Can we show LCS is self direct product feasible?

26

Key Takeaways

} Hardness Amplification Technique

◦ for Optimization problems

◦ via Direct Products

◦ against Randomized algorithms

} Hardness Amplification meets Fine-Grained Complexity

◦ Amplify hardness from 1/no(1) to 1 − o(1)
for LCS, Edit Distance, etc.

◦ If ETH is true on mild worst case then
Max-SAT is hard on average

27

Key Takeaways

} Hardness Amplification Technique

◦ for Optimization problems

◦ via Direct Products

◦ against Randomized algorithms

} Hardness Amplification meets Fine-Grained Complexity

◦ Amplify hardness from 1/no(1) to 1 − o(1)
for LCS, Edit Distance, etc.

◦ If ETH is true on mild worst case then
Max-SAT is hard on average

27

Key Takeaways

} Hardness Amplification Technique

◦ for Optimization problems

◦ via Direct Products

◦ against Randomized algorithms

} Hardness Amplification meets Fine-Grained Complexity

◦ Amplify hardness from 1/no(1) to 1 − o(1)
for LCS, Edit Distance, etc.

◦ If ETH is true on mild worst case then
Max-SAT is hard on average

27

Key Takeaways

} Hardness Amplification Technique

◦ for Optimization problems

◦ via Direct Products

◦ against Randomized algorithms

} Hardness Amplification meets Fine-Grained Complexity

◦ Amplify hardness from 1/no(1) to 1 − o(1)
for LCS, Edit Distance, etc.

◦ If ETH is true on mild worst case then
Max-SAT is hard on average

27

Key Takeaways

} Hardness Amplification Technique

◦ for Optimization problems

◦ via Direct Products

◦ against Randomized algorithms

} Hardness Amplification meets Fine-Grained Complexity

◦ Amplify hardness from 1/no(1) to 1 − o(1)
for LCS, Edit Distance, etc.

◦ If ETH is true on mild worst case then
Max-SAT is hard on average

27

THANK
YOU!

28

