New Arenas in
Hardness Amplification

Karthik C. S.

(Weizmann Institute of Science)

Joint work with

Elazar Goldenberg
(The Academic College of Tel Aviv-Yaffo)

Necessity is the Mother of Invention

Necessity is the Mother of Invention

© Average Case Complexity

Necessity is the Mother of Invention

© Average Case Complexity

o Hardness of Problems in Practice

Necessity is the Mother of Invention

© Average Case Complexity

o Hardness of Problems in Practice

© Modern Cryptography

Necessity is the Mother of Invention

© Average Case Complexity

o Hardness of Problems in Practice

© Modern Cryptography

o Hard on average function in NP

Necessity is the Mother of Invention

© Average Case Complexity

o Hardness of Problems in Practice

© Modern Cryptography

o Hard on average function in NP

Modest Goal:

Necessity is the Mother of Invention

© Average Case Complexity

o Hardness of Problems in Practice

© Modern Cryptography

o Hard on average function in NP

Modest Goal: Hardness Amplification

Necessity is the Mother of Invention

© Average Case Complexity

o Hardness of Problems in Practice

© Modern Cryptography

o Hard on average function in NP

Modest Goal: Hardness Amplification

Mild average case = Sharp average case

The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs

The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs

|

The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs

|

© Family of functions {g, }nen

The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs

|

© Family of functions {g, }nen

© Every algorithm ¢/’ running in time #'(n),
fails on p’(n) fraction of inputs

The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs

“ e p'(n) > p(n)

© Family of functions { gy }nen

© Every algorithm ¢/’ running in time #'(n),
fails on p’(n) fraction of inputs

The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs

o p'(n)> p(n)
“ ° fn = 89n
© Family of functions { gy }nen

© Every algorithm ¢/’ running in time #'(n),
fails on p’(n) fraction of inputs

The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs

o p'(n) > p(n)
“ L4 fn = 89n
© Family of functions {gy }nen e f is “interesting”

© Every algorithm ¢/’ running in time #'(n),
fails on p’(n) fraction of inputs

The Big Question

Can we do hardness amplification

The Big Question

Can we do hardness amplification
for problems

The Big Question

Can we do hardness amplification
for problems
we care about and

The Big Question

Can we do hardness amplification
for problems
we care about and
we believe are hard on average?

The Story so far

© #P (Lipton'89):

The Story so far

© #P (Lipton'89): If Permanent can be computed:

o deterministically in polynomial time
o on 1/2 the matrices

The Story so far

© #P (Lipton'89): If Permanent can be computed:

o deterministically in polynomial time
o on 1/2 the matrices

then Permanent is in BPP.

The Story so far

© #P (Lipton'89): If Permanent can be computed:

o deterministically in polynomial time
o on 1/2 the matrices

then Permanent is in BPP.

©® EXP (Trevisan-Vadhan'oy):

The Story so far

© #P (Lipton'89): If Permanent can be computed:

o deterministically in polynomial time
o on 1/2 the matrices

then Permanent is in BPP.

©® EXP (Trevisan-Vadhan'oy):If T eEXP:

o cannot be efficiently solved in the worst case by
o uniform probabilistic algorithms

The Story so far

© #P (Lipton'89): If Permanent can be computed:

o deterministically in polynomial time
o on 1/2 the matrices

then Permanent is in BPP.

©® EXP (Trevisan-Vadhan'oy):If T eEXP:

o cannot be efficiently solved in the worst case by
o uniform probabilistic algorithms

then dA €EXP:

o cannot be efficiently solved on random instances
o noticeably better than guessing the answer at random.

What about NP?

© Non-uniform case (Healy-Vadhan-Viola'o4):

What about NP?

© Non-uniform case (Healy-Vadhan-Viola’o4):If 4 f in NP

o circuits of size s(n) fails to compute f
o on 1/poly(n) fraction of inputs,

What about NP?

© Non-uniform case (Healy-Vadhan-Viola’o4):If 4 f in NP
o circuits of size s(n) fails to compute f
o on 1/poly(n) fraction of inputs,
then 3f” in NP
o circuits of size s'(1) = s(3/n)2W fails to compute f’
o on1/2 —1/s’(n) fraction of inputs.

What about NP?

© Non-uniform case (Healy-Vadhan-Viola’o4):If 4 f in NP

o circuits of size s(n) fails to compute f
o on 1/poly(n) fraction of inputs,

then 3f” in NP

o circuits of size s'(1) = s(3/n)2W fails to compute f’
o on1/2 —1/s’(n) fraction of inputs.

©® Uniform case (Trevisan’os):

What about NP?

© Non-uniform case (Healy-Vadhan-Viola’o4):If 4 f in NP

o circuits of size s(n) fails to compute f
o on 1/poly(n) fraction of inputs,

then 3f” in NP

o circuits of size s'(1) = s(3/n)2W fails to compute f’
o on1/2 —1/s’(n) fraction of inputs.

©® Uniform case (Trevisan’os):If every problem in NP

o admits an efficient uniform algorithm
o succeeds with probability at least 1/2 + 1/(log 1)

What about NP?

© Non-uniform case (Healy-Vadhan-Viola’o4):If 4 f in NP

o circuits of size s(n) fails to compute f
o on 1/poly(n) fraction of inputs,

then 3f” in NP

o circuits of size s'(1) = s(3/n)2W fails to compute f’
o on1/2 —1/s’(n) fraction of inputs.

©® Uniform case (Trevisan’os):If every problem in NP

o admits an efficient uniform algorithm
o succeeds with probability at least 1/2 + 1/(log 1)

then for every problem in NP

o there is an efficient uniform algorithm
o succeeds with probability at least 1 — 1/poly(n)

Arenas in Hardness Amplification

The Verona, Pompeii, Flavian, and Fiesole arenas
may not be as well known as the Colosseum,
but are just as impressive.

— Roman history trivia

Arenas in Hardness Amplification

Arenas in Hardness Amplification

Arenas in Hardness Amplification

ﬂ[I [1
yads

Arenas in Hardness Amplification

Optimization
Problems

Focus of this Talk

Optimization Problems

Focus of this Talk

Optimization Problems

© NP-hard problems

Focus of this Talk

Optimization Problems

© NP-hard problems

© Subquadratic-hard problems

Focus of this Talk

Optimization Problems

© NP-hard problems
© Subquadratic-hard problems

© Total Problems

Maximum Clique

Maximum Clique

Input: A graph G

Maximum Clique

Input: A graph G

Output: Clique of maximum size in G

Maximum Clique

Input: A graph G

Output: Clique of maximum size in G

Maximum Clique

Input: A graph G

Output: Clique of maximum size in G

Our Result for Maximum Clique

Theorem (Goldenberg-K’19)

Let @ be poly(n) time samplable distribution over graphs on n
vertices

Our Result for Maximum Clique

Theorem (Goldenberg-K’19)

Let @ be poly(n) time samplable distribution over graphs on n
vertices such that for every randomized algorithm ¢f running in
time poly(n),

Our Result for Maximum Clique

Theorem (Goldenberg-K’19)

Let @ be poly(n) time samplable distribution over graphs on n
vertices such that for every randomized algorithm ¢f running in
time poly(n), we have:

GPE25 [finds max-clique in G w.p. > 2/3] < 1-1/n.

Our Result for Maximum Clique

Theorem (Goldenberg-K’19)

Let @ be poly(n) time samplable distribution over graphs on n
vertices such that for every randomized algorithm ¢f running in
time poly(n), we have:

GPE25 [finds max-clique in G w.p. > 2/3] < 1-1/n.
Then there is @’ a poly(n) time samplable distribution over graphs
on poly(n) vertices

Our Result for Maximum Clique

Theorem (Goldenberg-K’19)

Let @ be poly(n) time samplable distribution over graphs on n
vertices such that for every randomized algorithm ¢f running in
time poly(n), we have:

GPE25 [finds max-clique in G w.p. > 2/3] < 1-1/n.
Then there is @’ a poly(n) time samplable distribution over graphs

on poly(n) vertices such that for every randomized algorithm o’
running in time poly(n),

Our Result for Maximum Clique

Theorem (Goldenberg-K’19)

Let @ be poly(n) time samplable distribution over graphs on n
vertices such that for every randomized algorithm ¢f running in
time poly(n), we have:

GPE25 [finds max-clique in G w.p. > 2/3] < 1-1/n.
Then there is @’ a poly(n) time samplable distribution over graphs
on poly(n) vertices such that for every randomized algorithm o’
running in time poly(#n), we have:

G'Pgw [0’ finds max-clique in G’ w.p. > 2/3] < 0.01.

Proof Overview

11

Proof Overview

1. Define new distribution &’

11

Proof Overview

1. Define new distribution &’

2. Given o’ for @’ design o for &

11

Proof Overview

1. Define new distribution &’
2. Given o’ for @’ design o for &

3. Argue that if o’ is correct on 0.01 fraction of inputs

then o is correct on 1 — 1/ fraction of inputs

11

Construction of New Distribution

9’ samples a graph H as follows:

12

Construction of New Distribution

9’ samples a graph H as follows:

1. Independently sample Gy, ..., Gy from < (k :=poly(n))

12

Construction of New Distribution

9’ samples a graph H as follows:
1. Independently sample Gy, ..., Gy from < (k :=poly(n))

2. Define H := G1U--- UGy

12

Construction of New Distribution

9’ samples a graph H as follows:
1. Independently sample Gy, ..., Gy from < (k :=poly(n))
2. Define H := G1U--- UGy

3. For every i # j insert every edge between G; and G;

12

Construction of New Distribution

9’ samples a graph H as follows:
1. Independently sample Gy, ..., Gy from 9 (k :=poly(n))
2. Define H := G1U--- UGy
3. For every i # j insert every edge between G; and G;

4. Output H

o o 12

Construction of New Distribution

9’ samples a graph H as follows:
1. Independently sample Gy, ..., Gy from 9 (k :=poly(n))
2. Define H := G1U--- UGy
3. For every i # j insert every edge between G; and G;

4. Output H

Sampling time: poly(rn)

12

Algorithm for Original Distribution

13

Algorithm for Original Distribution

Algorithm o

Input: A graph G sampled from &

Output: A maximum clique in G

13

Algorithm for Original Distribution

Algorithm o

Input: A graph G sampled from &

Output: A maximum clique in G

1. Set Solution to be empty.

13

Algorithm for Original Distribution

Algorithm o

Input: A graph G sampled from &

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.

13

Algorithm for Original Distribution

Algorithm o

Input: A graph G sampled from &

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.
2.1 Pick randomly i € [k]

13

Algorithm for Original Distribution

Algorithm o

Input: A graph G sampled from &

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.
2.1 Pick randomly i € [k]
2.2 Independently sample Gy, ..., Gi-1, Gis1, . . . Gk from @

13

Algorithm for Original Distribution

Algorithm o

Input: A graph G sampled from &

Output: A maximum clique in G

1. Set Solution to be empty.

2. Repeat following O(1) times.
2.1 Pick randomly i € [k]
2.2 Independently sample Gy, ..., Gi-1, Gis1, . . . Gk from @
2.3 Construct H setting G; to be G

13

Algorithm for Original Distribution

Algorithm o

Input: A graph G sampled from &

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.
2.1 Pick randomly i € [k]
2.2 Independently sample Gy, ..., Gi-1, Gis1, . . . Gk from @
2.3 Construct H setting G; to be G
2.4 Find clique in H using s’

13

Algorithm for Original Distribution

Algorithm o

Input: A graph G sampled from &

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.
2.1 Pick randomly i € [k]
2.2 Independently sample Gy, ..., Gi-1, Gis1, . . . Gk from @
2.3 Construct H setting G; to be G
2.4 Find clique in H using s’
2.5 Restrict clique in H to G and add to Solution

13

Algorithm for Original Distribution

Algorithm o

Input: A graph G sampled from &

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.
2.1 Pick randomly i € [k]
2.2 Independently sample Gy, ..., Gi-1, Gis1, . . . Gk from @
2.3 Construct H setting G; to be G
2.4 Find clique in H using s’
2.5 Restrict clique in H to G and add to Solution
3. Output the largest clique in Solution

13

Structure of Optimal Solutions

If S is a maximum clique of H then for any i € [k] its
restriction to vertices of G; gives a maximum clique of G;.

Correctness of Algorithm

© 9o be one iteration of Step 2 of o

15

Correctness of Algorithm

© 9o be one iteration of Step 2 of o

© If gy outputs maximum clique w.p. € on 1 — 1/ fraction of
samples from & then,

15

Correctness of Algorithm

© 9o be one iteration of Step 2 of o

© If gy outputs maximum clique w.p. € on 1 — 1/ fraction of
samples from & then,

d outputs maximum clique w.p. 2/3 on 1 — 1/n fraction of
samples from .

15

Correctness of Algorithm

© 9o be one iteration of Step 2 of o

© If gy outputs maximum clique w.p. € on 1 — 1/ fraction of
samples from & then,

d outputs maximum clique w.p. 2/3 on 1 — 1/n fraction of
samples from .

© Sulffices to show: ¢’ outputs maximum clique in Step 2.5
w.p. € on 1 —1/n fraction of samples from .

15

A Direct Product Lemma

16

A Direct Product Lemma

Lemma (Feige-Kilian'94)
Let I be a distribution over X. Let f : X* — {0, 1}.

A Direct Product Lemma

Lemma (Feige-Kilian'94)
Let I be a distribution over X. Let f : X* — {0,1}. Then,

Pr [luix -l 2] < K7,
i€[k]

A Direct Product Lemma

Lemma (Feige-Kilian'94)
Let I be a distribution over X. Let f : X* — {0,1}. Then,

Pr [luix -l 2] < K7,
i€[k]

where

A Direct Product Lemma

Lemma (Feige-Kilian'94)
Let I be a distribution over X. Let f : X* — {0,1}. Then,

Pr [luix -l 2] < K7,

i€[k]
where
= B F(¥)]
w= E S ,
Wix = E O_[f(x‘l/-~-/xi—1/x/xi+1/--'xk)]'
X1 peeesXim1,Xig1 yeee, X~

A Direct Product Lemma

Lemma (Feige-Kilian'94)
Let I be a distribution over X. Let f : X* — {0,1}. Then,

Pr [luix -l 2] < K7,

i€[k]
where
= B F(¥)]
w= E S ,
Wix = E O_[f(x‘l/-~-/xi—1/x/xi+1/--'xk)]'
X1 peeesXim1,Xig1 yeee, X~

f(xk) =1 & o’ outputs maximum clique w.p. 2/3

Proof Summary

17

Proof Summary

© New Distribution: Direct Product of Old Distribution with
solution preserving property

17

Proof Summary

© New Distribution: Direct Product of Old Distribution with
solution preserving property

© Invoke Feige-Kilian lemma to show amplification of
hardness

17

Hardness Amplification for Optimization Problems

18

Hardness Amplification for Optimization Problems

An optimization problem IT is the quadruple (7, Solry, A, goaly):

18

Hardness Amplification for Optimization Problems

An optimization problem IT is the quadruple (7, Solry, A, goaly):

©® Ip: set of instances of I;

18

Hardness Amplification for Optimization Problems

An optimization problem IT is the quadruple (7, Solry, A, goaly):

©® Ip: set of instances of I;

©® Solry: function from Iy to set of feasible solutions;

18

Hardness Amplification for Optimization Problems

An optimization problem IT is the quadruple (7, Solry, A, goaly):

©® Ip: set of instances of I;
©® Solry: function from Iy to set of feasible solutions;

© An: assigns (x € Iy1, ¥ € Solrp(x)) a non-negative integer;

18

Hardness Amplification for Optimization Problems

An optimization problem IT is the quadruple (7, Solry, A, goaly):

©® Ip: set of instances of I;
©® Solry: function from Iy to set of feasible solutions;
© An: assigns (x € Iy1, ¥ € Solrp(x)) a non-negative integer;

©® goal;; € {min, max}.

18

Direct Product Feasibility

LetS, T:NxN — N.

19

Direct Product Feasibility

LetS, T:NxN — N.

We say I(li1, Solrg, Arg, goalpy) is (S, T)-direct product feasible

19

Direct Product Feasibility

LetS, T:NxN — N.
We say I(li1, Solrg, Arg, goalpy) is (S, T)-direct product feasible

if there exists deterministic (Gen, Dec) :

19

Direct Product Feasibility

LetS, T:NxN — N.
We say I(li1, Solrg, Arg, goalpy) is (S, T)-direct product feasible

if there exists deterministic (Gen, Dec) :

® Gen:
o Input: x1,...,x¢ € In(n)
o Output: x” € I(S(n, k))

19

Direct Product Feasibility

LetS, T:NxN — N.
We say I(li1, Solrg, Arg, goalpy) is (S, T)-direct product feasible

if there exists deterministic (Gen, Dec) :

® Gen:
o Input: x1,...,x¢ € In(n)
o Output: x” € I(S(n, k))
© Dec:

o Input: i € [k], x1,..., xx € In(n), and optimal y” € Solr(x”)

o Output: optimal y € Solr(x;)

19

Direct Product Feasibility

LetS, T:NxN — N.
We say I(li1, Solrg, Arg, goalpy) is (S, T)-direct product feasible

if there exists deterministic (Gen, Dec) :

® Gen:
o Input: x1,...,x¢ € In(n)
o Output: x” € I(S(n, k))

© Dec:
o Input: i € [k], x1,..., xx € In(n), and optimal y” € Solr(x”)

o Output: optimal y € Solr(x;)
©® Gen and Dec run in T(n, k) time.

19

Our General Result

Theorem (Goldenberg-K’19)

Let ITbe (S, T)-direct product feasible. Let D be s(1) time samplable
distribution over Iry(n) such that for every randomized algorithm of
running in time (), we have:
Pr [+ finds optimal solution of x w.p. > 2/3] <1— L
Py

p(n)

*Conditions apply.

20

Our General Result

Theorem (Goldenberg-K’19)

Let ITbe (S, T)-direct product feasible. Let D be s(1) time samplable
distribution over Iry(n) such that for every randomized algorithm of
running in time (), we have:

PIb [+ finds optimal solution of x w.p. > 2/3] <1— L
X~

p(n)

Then for k = poly(p(n)) there is D" a O(k - s(n) + T(n, k)) time
samplable distribution over Ir7(S(n, k)) such that for every
randomized algorithm s’ running in time* O(t(n)), we have:

PII;) [0’ finds optimal solution of x” w.p. > 2/3] < 0.01.
x'~D’

*Conditions apply.

20

Problems in P

Theorem (Goldenberg-K’19)

Let D be O(n) time samplable distribution over LCS/Edit Distance
such that for every randomized algorithm ¢ running in time n%~¢,

we have:

PII‘D [d finds optimal alignment of x w.p. > 2/3] <1 —1/pem,
oy

21

Problems in P

Theorem (Goldenberg-K’19)

Let D be O(n) time samplable distribution over LCS/Edit Distance
such that for every randomized algorithm ¢ running in time n%~¢,

we have:
PII;) [d finds optimal alignment of x w.p. > 2/3] <1 —1/pem,
Pl
Then there is D’ a O(n) time samplable distribution over LCS/Edit

Distance such that for every randomized algorithm 1’ running in

time n272¢, we have:

PII') [’ finds optimal alignment of x’ w.p. > 2/3] < 0.01.
x'~D’

21

Problems in P

Theorem (Goldenberg-K’19)

Let D be O(n) time samplable distribution over LCS/Edit Distance
such that for every randomized algorithm ¢ running in time n%~¢,

we have:
PII‘D [d finds optimal alignment of x w.p. > 2/3] <1 —1/pem,
Pl
Then there is D’ a O(n) time samplable distribution over LCS/Edit

Distance such that for every randomized algorithm 1’ running in

time n272¢, we have:

PIl') [’ finds optimal alignment of x’ w.p. > 2/3] < 0.01.
x'~D’

What about Fréchet Distance?

21

Problems in P

Theorem (Goldenberg-K’19)

Let D be O(n) time samplable distribution over LCS/Edit Distance
such that for every randomized algorithm ¢ running in time n%~¢,

we have:

PII‘D [d finds optimal alignment of x w.p. > 2/3] <1 —1/pem,

X~

Hardness Amplification for
Then therg
T Matrix Multiplication

2-2¢

inning in

time n , we I

PII') [’ finds optimal alignment of x’ w.p. > 2/3] < 0.01.
x'~D’

What about Fréchet Distance?

21

Connection to Max-SAT

Theorem (Goldenberg-K’19)

Let D be poly(n) time samplable distribution over Max-SAT
such that for every randomized algorithm ¢ running in time
2°(n) we have:

P% [Qﬂ finds optimal assignment of x w.p. > 2 /3] <1 -1/t

X~

22

Connection to Max-SAT

Theorem (Goldenberg-K’19)

Let D be poly(n) time samplable distribution over Max-SAT
such that for every randomized algorithm ¢ running in time
2°(n) we have:

P% [Qﬂ finds optimal assignment of x w.p. > 2 /3] <1 -1/t
X~

Then there is D" a poly(n) time samplable distribution over
Max-SAT such that for every randomized algorithm o’
running in time n“’(1>, we have:

PE [’ finds optimal assignment of x” w.p. > 2/3] < 0.01.
x/'~D’

22

Connection to Max-SAT

Theorem (Goldenberg-K’19)

IBEFBRE Can be extended to Vertex Cover,

Dominating Set, etc

P% [Qﬂ finds optimal assignment of x w.p. > 2 /3] <1 -1/t
X~

Then there is D" a poly(n) time samplable distribution over
Max-SAT such that for every randomized algorithm o’

running in time n“’(l), we have:

PE [’ finds optimal assignment of x” w.p. > 2/3] < 0.01.
x/'~D’

22

Connection to Max-SAT

Theorem (Goldenberg-K’19)

Let D be g

Can be extended to Vertex Cover,

Dominating Set, etc

P% [Qﬂ finds optimal assignment of x w.p. > 2 /3] <1 -1/t
X~

Can even be extended to Knapsack, Jon over

Max-SAT N A’
o and other maximization problems!
running in

PE [’ finds optimal assignment of x” w.p. > 2/3] < 0.01.
x/'~D’

22

Connection to TFNP

Factoring

23

Connection to TFNP

Factoring

© Given N € [2"] find all its prime factors

23

Connection to TFNP

Factoring

© Given N € [2"] find all its prime factors

© Gen multiplies input integers

23

Connection to TFNP

Factoring

© Given N € [2"] find all its prime factors
© Gen multiplies input integers

© Dec checks if candidate prime divides input integer

23

Connection to TFNP

Factoring
© Given N € [2"] find all its prime factors
© Gen multiplies input integers

© Dec checks if candidate prime divides input integer

End of Line Problem

© Given P,S: {0,1}" — {0,1}" such that P(0") = 0" # S(0")

23

Connection to TFNP

Factoring
© Given N € [2"] find all its prime factors
© Gen multiplies input integers

© Dec checks if candidate prime divides input integer

End of Line Problem

© Given P,S: {0,1}" — {0,1}" such that P(0") = 0" # S(0")

© Find x such that P(S(x)) # x or S(P(x)) = x # 0"

23

Connection to TFNP

Factoring
© Given N € [2"] find all its prime factors
© Gen multiplies input integers

© Dec checks if candidate prime divides input integer

End of Line Problem

© Given P,S: {0,1}" — {0,1}" such that P(0") = 0" # S(0")
© Find x such that P(S(x)) # x or S(P(x)) = x # 0"

© Gen concatenates input and output gates

23

Connection to TFNP

Factoring
© Given N € [2"] find all its prime factors
© Gen multiplies input integers
© Dec checks if candidate prime divides input integer

End of Line Problem

© Given P,S: {0,1}" — {0,1}" such that P(0") = 0" # S(0")
© Find x such that P(S(x)) # x or S(P(x)) = x # 0"
© Gen concatenates input and output gates

© Dec restricts on the corresponding block
23

Open Problem 1

Average case hard problems in P

24

Open Problem 1

Average case hard problems in P

© Can we show some natural problem in P is hard for the
uniform distribution?

24

Open Problem 1

Average case hard problems in P

© Can we show some natural problem in P is hard for the
uniform distribution?

© Can we construct a fine-grained one way function from
worst case assumptions?

24

Open Problem 2

Gap Amplification vs. Hardness Amplification

25

Open Problem 2

Gap Amplification vs. Hardness Amplification

© Can we obtain a trade-off between gap and hardness?

25

Open Problem 2

Gap Amplification vs. Hardness Amplification

© Can we obtain a trade-off between gap and hardness?

© Can we say something stronger about Max-SAT assuming
Gap-ETH?

25

Open Problem 3

Direct Product Feasibility

26

Open Problem 3

Direct Product Feasibility

© Can we characterize direct product feasible pairs?

26

Open Problem 3

Direct Product Feasibility

© Can we characterize direct product feasible pairs?

© Can we show Orthogonal Vectors is self direct product
teasible?

26

Open Problem 3

Direct Product Feasibility

© Can we characterize direct product feasible pairs?

© Can we show Orthogonal Vectors is self direct product
teasible?

© Can we show LCS is self direct product feasible?

26

CYRELCEWETE

© Hardness Amplification Technique

27

CYRELCEWETE

© Hardness Amplification Technique
o for Optimization problems
o via Direct Products

o against Randomized algorithms

27

CYRELCEWETE

© Hardness Amplification Technique
o for Optimization problems
o via Direct Products

o against Randomized algorithms

© Hardness Amplification meets Fine-Grained Complexity

27

CYRELCEWETE

© Hardness Amplification Technique
o for Optimization problems
o via Direct Products

o against Randomized algorithms

© Hardness Amplification meets Fine-Grained Complexity
o Amplify hardness from 1/n°® to 1 — o(1)
for LCS, Edit Distance, etc.

27

CYRELCEWETE

© Hardness Amplification Technique
o for Optimization problems
o via Direct Products

o against Randomized algorithms

© Hardness Amplification meets Fine-Grained Complexity
o Amplify hardness from 1/n°® to 1 — o(1)
for LCS, Edit Distance, etc.

o If ETH is true on mild worst case then

Max-SAT is hard on average

27

THANK

YOU!

