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© Modern Cryptography

o Hard on average function in NP

Modest Goal: Hardness Amplification

Mild average case = Sharp average case



The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen



The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs



The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs

|



The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs

|

© Family of functions {g, }nen



The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs

|

© Family of functions {g, }nen

© Every algorithm ¢/’ running in time #'(n),
fails on p’(n) fraction of inputs



The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs

“ e p'(n) > p(n)

© Family of functions { gy }nen

© Every algorithm ¢/’ running in time #'(n),
fails on p’(n) fraction of inputs



The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs

o p'(n)> p(n)
“ ° fn = 89n
© Family of functions { gy }nen

© Every algorithm ¢/’ running in time #'(n),
fails on p’(n) fraction of inputs



The Utopic Theorem of Hardness Ampilification

© Family of functions { f,; }nen

© Every algorithm of running in time ¢(n),
fails on p(n) fraction of inputs

o p'(n) > p(n)
“ L4 fn = 89n
© Family of functions {gy }nen e f is “interesting”

© Every algorithm ¢/’ running in time #'(n),
fails on p’(n) fraction of inputs
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The Big Question

Can we do hardness amplification
for problems
we care about and
we believe are hard on average?
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The Story so far

© #P (Lipton'89): If Permanent can be computed:

o deterministically in polynomial time
o on 1/2 the matrices

then Permanent is in BPP.

©® EXP (Trevisan-Vadhan'oy):If T eEXP:

o cannot be efficiently solved in the worst case by
o uniform probabilistic algorithms

then dA €EXP:

o cannot be efficiently solved on random instances
o noticeably better than guessing the answer at random.
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© Non-uniform case (Healy-Vadhan-Viola’o4):If 4 f in NP

o circuits of size s(n) fails to compute f
o on 1/poly(n) fraction of inputs,

then 3f” in NP

o circuits of size s'(1) = s(3/n)2W fails to compute f’
o on1/2 —1/s’(n) fraction of inputs.

©® Uniform case (Trevisan’os):If every problem in NP

o admits an efficient uniform algorithm
o succeeds with probability at least 1/2 + 1/(log 1)

then for every problem in NP

o there is an efficient uniform algorithm
o succeeds with probability at least 1 — 1/poly(n)



Arenas in Hardness Amplification

The Verona, Pompeii, Flavian, and Fiesole arenas
may not be as well known as the Colosseum,
but are just as impressive.

— Roman history trivia
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Optimization Problems

© NP-hard problems
© Subquadratic-hard problems

© Total Problems
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Our Result for Maximum Clique

Theorem (Goldenberg-K’19)

Let @ be poly(n) time samplable distribution over graphs on n
vertices such that for every randomized algorithm ¢f running in
time poly(n), we have:

GPE25 [ finds max-clique in G w.p. > 2/3] < 1-1/n.
Then there is @’ a poly(n) time samplable distribution over graphs
on poly(n) vertices such that for every randomized algorithm o’
running in time poly(#n), we have:

G'Pgw [0’ finds max-clique in G’ w.p. > 2/3] < 0.01.
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Proof Overview

1. Define new distribution &’
2. Given o’ for @’ design o for &

3. Argue that if o’ is correct on 0.01 fraction of inputs

then o is correct on 1 — 1/ fraction of inputs

11
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Construction of New Distribution

9’ samples a graph H as follows:
1. Independently sample Gy, ..., Gy from 9 (k :=poly(n))
2. Define H := G1U--- UGy
3. For every i # j insert every edge between G; and G;

4. Output H

Sampling time: poly(rn)
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Algorithm for Original Distribution

Algorithm o

Input: A graph G sampled from &

Output: A maximum clique in G

1. Set Solution to be empty.
2. Repeat following O(1) times.
2.1 Pick randomly i € [k]
2.2 Independently sample Gy, ..., Gi-1, Gis1, . . . Gk from @
2.3 Construct H setting G; to be G
2.4 Find clique in H using s’
2.5 Restrict clique in H to G and add to Solution
3. Output the largest clique in Solution

13



Structure of Optimal Solutions

If S is a maximum clique of H then for any i € [k] its
restriction to vertices of G; gives a maximum clique of G;.
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Correctness of Algorithm

© 9o be one iteration of Step 2 of o

© If gy outputs maximum clique w.p. € on 1 — 1/ fraction of
samples from & then,

d outputs maximum clique w.p. 2/3 on 1 — 1/n fraction of
samples from .

© Sulffices to show: ¢’ outputs maximum clique in Step 2.5
w.p. € on 1 —1/n fraction of samples from .

15
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A Direct Product Lemma

Lemma (Feige-Kilian'94)
Let I be a distribution over X. Let f : X* — {0,1}. Then,

Pr [luix -l 2 ] < K7,

i€[k]
where
= B F(¥)]
w= E S ,
Wix = E O_[f(x‘l/-~-/xi—1/x/xi+1/--'xk)]'
X1 peeesXim1,Xig1 yeee, X~

f(xk) =1 & o’ outputs maximum clique w.p. 2/3



Proof Summary

17



Proof Summary

© New Distribution: Direct Product of Old Distribution with
solution preserving property

17



Proof Summary

© New Distribution: Direct Product of Old Distribution with
solution preserving property

© Invoke Feige-Kilian lemma to show amplification of
hardness

17



Hardness Amplification for Optimization Problems

18



Hardness Amplification for Optimization Problems

An optimization problem IT is the quadruple (7, Solry, A, goaly):

18



Hardness Amplification for Optimization Problems

An optimization problem IT is the quadruple (7, Solry, A, goaly):

©® Ip: set of instances of I;

18



Hardness Amplification for Optimization Problems

An optimization problem IT is the quadruple (7, Solry, A, goaly):

©® Ip: set of instances of I;

©® Solry: function from Iy to set of feasible solutions;

18



Hardness Amplification for Optimization Problems

An optimization problem IT is the quadruple (7, Solry, A, goaly):

©® Ip: set of instances of I;
©® Solry: function from Iy to set of feasible solutions;

© An: assigns (x € Iy1, ¥ € Solrp(x)) a non-negative integer;

18



Hardness Amplification for Optimization Problems

An optimization problem IT is the quadruple (7, Solry, A, goaly):

©® Ip: set of instances of I;
©® Solry: function from Iy to set of feasible solutions;
© An: assigns (x € Iy1, ¥ € Solrp(x)) a non-negative integer;

©® goal;; € {min, max}.

18
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Direct Product Feasibility

LetS, T:NxN — N.
We say I(li1, Solrg, Arg, goalpy) is (S, T)-direct product feasible

if there exists deterministic (Gen, Dec) :

® Gen:
o Input: x1,...,x¢ € In(n)
o Output: x” € I(S(n, k))

© Dec:
o Input: i € [k], x1,..., xx € In(n), and optimal y” € Solr(x”)

o Output: optimal y € Solr(x;)
©® Gen and Dec run in T(n, k) time.
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Our General Result

Theorem (Goldenberg-K’19)
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Theorem (Goldenberg-K’19)

Let ITbe (S, T)-direct product feasible. Let D be s(1) time samplable
distribution over Iry(n) such that for every randomized algorithm of
running in time (), we have:

PIb [+ finds optimal solution of x w.p. > 2/3] <1— L
X~

p(n)

Then for k = poly(p(n)) there is D" a O(k - s(n) + T(n, k)) time
samplable distribution over Ir7(S(n, k)) such that for every
randomized algorithm s’ running in time* O(t(n)), we have:

PII;) [0’ finds optimal solution of x” w.p. > 2/3] < 0.01.
x'~D’

*Conditions apply.
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Hardness Amplification for
Then therg
T Matrix Multiplication

2-2¢

inning in

time n , we I
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P% [Qﬂ finds optimal assignment of x w.p. > 2 /3] <1 -1/t
X~
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Connection to Max-SAT

Theorem (Goldenberg-K’19)

Let D be g

Can be extended to Vertex Cover,

Dominating Set, etc

P% [Qﬂ finds optimal assignment of x w.p. > 2 /3] <1 -1/t
X~

Can even be extended to Knapsack, Jon over

Max-SAT N A’
o and other maximization problems!
running in

PE [’ finds optimal assignment of x” w.p. > 2/3] < 0.01.
x/'~D’
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Connection to TFNP

Factoring
© Given N € [2"] find all its prime factors
© Gen multiplies input integers
© Dec checks if candidate prime divides input integer

End of Line Problem

© Given P,S: {0,1}" — {0,1}" such that P(0") = 0" # S(0")
© Find x such that P(S(x)) # x or S(P(x)) = x # 0"
© Gen concatenates input and output gates

© Dec restricts on the corresponding block
23
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Open Problem 1

Average case hard problems in P

© Can we show some natural problem in P is hard for the
uniform distribution?

© Can we construct a fine-grained one way function from
worst case assumptions?
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Open Problem 2

Gap Amplification vs. Hardness Amplification

© Can we obtain a trade-off between gap and hardness?

© Can we say something stronger about Max-SAT assuming
Gap-ETH?
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Open Problem 3

Direct Product Feasibility

© Can we characterize direct product feasible pairs?

© Can we show Orthogonal Vectors is self direct product
teasible?

© Can we show LCS is self direct product feasible?
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CYRELCEWETE

© Hardness Amplification Technique
o for Optimization problems
o via Direct Products

o against Randomized algorithms

© Hardness Amplification meets Fine-Grained Complexity
o Amplify hardness from 1/n°® to 1 — o(1)
for LCS, Edit Distance, etc.

o If ETH is true on mild worst case then

Max-SAT is hard on average
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