Joint Work with

On connections between k-coloring and Euclidean k-means

Karthik C. S. (Rutgers University)

Enver Aman Undergrad at Rutgers *Graduated* May 2024

Sharath Punna Masters at Rutgers *Graduated* May 2023

k-means Clustering

• **Input**: Graph $G = (V, E)$ and integer k

k-means Clustering

• **Input**: Points $P \subset \mathbb{R}^d$ and integer k

- Input: Graph $G = (V, E)$ and integer k
- Output: $V := V_1 \cup \cdots \cup V_k$, such that V_i is an independent set · ∪ ⋯ · ∪ *Vk*

- Input: Points $P \subset \mathbb{R}^d$ and integer k
- Output: $P := P_1 \cup \cdots \cup P_{k'}$ such that · ∪ ⋯ · ∪ *Pk*

 $\sum_{i=1}^{\infty}||p-c_i||_2^2$ is minimized, where $c_i = \sum_i$ ∑ ∑ *i*∈[*k*] *p*∈*Pi* $||p - c_i||_2^2$ 2 *p*∈*Pi p* $|P_i|$

k-means Clustering

- Input: Graph $G = (V, E)$ and integer k
- Output: $V := V_1 \cup \cdots \cup V_k$, such that V_i is an independent set · ∪ ⋯ · ∪ *Vk*
- Classic NP-hard problem

- Input: Points $P \subset \mathbb{R}^d$ and integer k
- Output: $P := P_1 \cup \cdots \cup P_{k'}$ such that · ∪ ⋯ · ∪ *Pk*

k-means Clustering

• Important NP-hard problem

k-means Clustering

• Input: Points $P \subset \mathbb{R}^d$

Graph k-Coloring

• Input: Graph $G = (V, E)$, G is d-regular

k-means Clustering • Input: Points $P \subset \mathbb{R}^d$

Graph k-Coloring

• Input: Graph $G = (V, E)$, G is d-regular

Orient *E* arbitrarily

$$
v \in V \longrightarrow p_v \in \mathbb{R}^{|E|}
$$

if e is outgoing edge of v −1 if *e* is incoming edge of *v* otherwise

$$
v \in V
$$

$$
p_v(e) = \begin{cases} +1 \\ -1 \\ 0 \end{cases}
$$

+1 if *e* is outgoing edge of *v* −1 if *e* is incoming edge of *v* 0 otherwise

k-means Clustering • Input: Points *P* ⊂ ℝ*^d*

Graph k-Coloring

• Input: Graph $G = (V, E)$, G is d-regular

 $v \in V$ $p_{\nu}(e) =$ $\{u,v\} \in E$ ∥*pv* − $- p u √^2$ \mathcal{L} $\leq E$
= 4 + 2(*d* − 1) = 2*d* + 2

Orient *E* arbitrarily

$$
\longrightarrow p_{\nu} \in \mathbb{R}^{|E|}
$$

+1 if *e* is outgoing edge of *v* −1 if *e* is incoming edge of *v* otherwise

k-means Clustering • Input: Points *P* ⊂ ℝ*^d*

Graph k-Coloring

• Input: Graph $G = (V, E)$, G is d-regular

 $p_{\nu}(e) =$ $\{u,v\} \in E$ ∥*pv* − $- p u √^2$ \mathcal{L} $\leq E$
= 4 + 2(*d* − 1) = 2*d* + 2

Orient *E* arbitrarily

 $v \in V \longrightarrow p_v \in \mathbb{R}^{|E|}$

{*^u*, *^v*} [∉]

v − *p*_u

∥*p ^E* [⟹]

 $2 < 2_d$

k-means Clustering • Input: Points *P* ⊂ ℝ|*E*[|]

2*d* if $\{u, v\} \notin E$ $2d + 2$ if $\{u, v\} \in E$

Graph k-Coloring

• Input: Graph $G = (V, E)$, G is d-regular

$||p_u - p_v||_2^2 = \{$

k-means Clustering • Input: Points *P* ⊂ ℝ|*E*[|]

2*d* if $\{u, v\} \notin E$ $2d + 2$ if $\{u, v\} \in E$

Graph k-Coloring

• Input: Graph $G = (V, E)$, G is d-regular

 $||p_u - p_v||_2^2 = \{$

|*Pi*| is minimized, ∑ *i*∈[*k*] *p*,*q*∈*Pi* 1 $2|P_i|$ $\sum_{p,q \in I}$ $||p - q||^2$ 2

Completeness Soundness

2*d* if $\{u, v\} \notin E$ $2d + 2$ if $\{u, v\} \in E$

• $V := V_1 \cup \cdots \cup V_k$, such that V_i is an independent set · ∪ ⋯ · ∪ *Vk*

$$
\sum_{i \in [k]} \frac{1}{2|P_i|} \sum_{p,q \in P_i} ||p - q||_2^2 = \sum_{i \in [k]} \frac{1}{2|P_i|} \sum_{p,q \in P_i} 2d
$$

$$
= \sum d \cdot (|P_i| - 1) = d \cdot (|V| - k)
$$

2*d* if $\{u, v\} \notin E$ $2d + 2$ if $\{u, v\} \in E$

i∈[*k*]

Completeness Soundness

• $V := V_1 \cup \cdots \cup V_k$, such that V_i is an independent set · ∪ ⋯ · ∪ *Vk*

Completeness Soundness \cdot $P := P_1 \cup \cdots \cup P_k$ is some clustering $\forall i \in [k], \sum$ \therefore ∃*i* ∈ [*k*], $\sum |p - q||_2^2 > 2d \cdot |P_i| \cdot (|P_i| - 1)$ · ∪ ⋯ · ∪ *Pk p*,*q*∈*Pi* $||p - q||_2^2$ ≥ 2*d* ⋅ $|P_i|$ ⋅ ($|P_i|$ − 1)

p,*q*∈*P_i*

$$
\sum_{i \in [k]} \frac{1}{2|P_i|} \sum_{p,q \in P_i} ||p - q||_2^2 = \sum_{i \in [k]} \frac{1}{2|P_i|} \sum_{p,q \in P_i} 2d
$$

$$
= \sum d \cdot (|P_i| - 1) = d \cdot (|V| - k)
$$

2*d* if $\{u, v\} \notin E$ $2d + 2$ if $\{u, v\} \in E$

i∈[*k*]

A simple reduction k-coloring to k-means $||p_u - p_v||_2^2 = \{$

-
- $V := V_1 \cup \cdots \cup V_k$, such that · ∪ ⋯ · ∪ *Vk*

 V_i is an independent set *Vi*

 $= \sum d \cdot (|P_i| - 1) = d \cdot (|V| - k)$ *i*∈[*k*]

2*d* if $\{u, v\} \notin E$ $2d + 2$ in $\forall x \in E$ Completenes 2-colorius Roundness IP - \cap ¹ \cup \cdots \cup P_k is some clustering $\forall i \in [k], \sum ||p - q||_2^2 \ge 2d \cdot |P_i| \cdot (|P_i| - 1)$ \therefore ∃*i* ∈ [*k*], $\sum |p - q||_2^2 > 2d \cdot |P_i| \cdot (|P_i| - 1)$ · ∪ ⋯ · ∪ *Pk* $p, q \in P_i$ *p*,*q*∈*Pi* $\begin{array}{l} \text{12d} + 2 & \text{2d + 2} \\ \text{3-coloring is NP-hord} \end{array}$ **3**-me^ans is NP-h \Rightarrow

$$
\sum_{i \in [k]} \frac{1}{2|P_i|} \sum_{p,q \in P_i} ||p - q||_2^2 = \sum_{i \in [k]} \frac{1}{2|P_i|} \sum_{p,q \in P_i} 2d
$$

- 2-coloring reduces to 2-means
- 2-coloring is in P so 2-means is in P

- 2-coloring reduces to 2-means
- 2-coloring is in P so 2-means is in P

· 2-means is NP-hard [Dasgupta-Freund'09]

- 2-means is NP-hard [Dasgupta-Freund'09]
- **Proof Strategy**:

(i) Structured 3-NAE-SAT is NP-hard

(ii) NAE-SAT is reduced to distance matrix of points of 2-means instance

(iii) Distance matrix can be realized in Euclidean space (PSD check)

- 2-means is NP-hard [Dasgupta-Freund'09]
- **Proof Strategy**:

(i) Structured 3-NAE-SAT is NP-hard

(ii) NAE-SAT is reduced to distance matrix of points of 2-means instance

(iii) Distance matrix can be realized in Euclidean space (PSD check)

- Input: Points *P* ⊂ ℝ*^d*
- Output: $P := P_1 \cup P_2$, to minimize: · $\dot{\cup}$ P_2

$$
|E\backslash E(V_1, V_2)| \cdot \left(1 + \frac{||V_1| - |V_2||}{|V|}\right)
$$

2-means Clustering

$$
\frac{\sum_{p,q \in P_1} ||p-q||_2^2}{2|P_1|} + \frac{\sum_{p,q \in P_2} ||p-q||_2^2}{2|P_2|}
$$

Balanced Max-Cut

- Input: Graph $G = (V, E)$, G is d -regular
- Output: $V := V_1 \cup V_2$, to minimize: · $\dot{\cup}$ V_2

- Input: Points *P* ⊂ ℝ*^d*
- Output: $P := P_1 \cup P_2$, to minimize: · $\dot{\cup}$ P_2

• We give NP-hardness reduction from Linear 4-regular 3-NAE-SAT

$$
|E\backslash E(V_1, V_2)| \cdot \left(1 + \frac{||V_1| - |V_2||}{|V|}\right)
$$

2-means Clustering

$$
\frac{\sum_{p,q \in P_1} ||p-q||_2^2}{2|P_1|} + \frac{\sum_{p,q \in P_2} ||p-q||_2^2}{2|P_2|}
$$

Balanced Max-Cut

- Input: Graph $G = (V, E)$, G is d -regular
- Output: $V := V_1 \cup V_2$, to minimize: · $\dot{\cup}$ V_2

Balanced Max-Cut orient *E* arbitrarily

- Input: Graph $G = (V, E)$, G is d -regular
- Output: $V := V_1 \cup V_2$, to minimize: · $\dot{\cup}$ V_2

• We give NP-hardness reduction from Linear 4-regular 3-NAE-SAT

$\nu \in V \longrightarrow p_{\nu} \in \mathbb{R}^{|E|}$

 $p_{\nu}(e) =$ +1 if *e* is outgoing edge of *v* −1 if *e* is incoming edge of *v* 0 otherwise

$$
|E\backslash E(V_1, V_2)| \cdot \left(1 + \frac{||V_1| - |V_2||}{|V|}\right)
$$

$$
||p_u - p_v||_2^2 = \begin{cases} 2d & \text{if } \{u, v\} \notin E \\ 2d + 2 & \text{if } \{u, v\} \in E \end{cases}
$$

Max-Cut on *n* vertices can be solved in 2^{con/3} time

[Williams'05]

Max-Cut on *n* vertices can be solved in time 2*ωn*/3

2-means on *n* points can be solved in time 2*ωn*/3

[Williams'05] This paper

Max-Cut on *n* vertices can be solved in 2^{con/3} time

[Williams'05]

State-of-the-art $2^{\omega n/3} \leq 1.73^n$

2-means on *n* points can be solved in 2^{con/3} time

This paper

Max-Cut on *n* vertices can be solved in $2^{om/3}$ time

[Williams'05]

Max-Cut on *n* vertices can be solved in 2^{con/3} time

[Williams'05]

Max-Cut on *n* vertices can be solved in time 2*ωn*/3

[Williams'05]

• Enumerate all cuts (A_i, B_i) of G_i

Max-Cut on *n* vertices can be solved in time 2*ωn*/3

[Williams'05]

- Enumerate all cuts (A_i, B_i) of G_i
- Construct graph H on $3 \cdot 2^{n/3}$ nodes
- Edge Weight of H is sum of cut edges

Max-Cut on *n* vertices can be solved in time 2*ωn*/3

[Williams'05]

- Enumerate all cuts (A_i, B_i) of G_i
- Construct graph H on $3 \cdot 2^{n/3}$ nodes
- Edge Weight of H is sum of cut edges
- Solve weighted triangle detection on node graph H 3 ⋅ 2*n*/3

2-means on *n* points can be solved in $2^{om/3}$ time

2-means on *n* points can be solved in $2^{wn/3}$ time

2-means on *n* points can be solved in time 2*ωn*/3

• Enumerate all clustering (S_i, T_i) of P_i

2-means on *n* points can be solved in time 2*ωn*/3

- Enumerate all clustering (S_i, T_i) of P_i
- Construct graph H on $3 \cdot 2^{n/3}$ nodes
- Edge Weight of H is sum of pairwise intracluster distances
- Solve weighted triangle detection on node graph H 3 ⋅ 2*n*/3

Open Directions

Open Directions

Can we use ideas from 3-coloring algorithms to obtain $(2 - \varepsilon)^n$ time algorithm for 3-means?

Open Directions

Can we use ideas from 2-means algorithm to obtain $(2 - \varepsilon)^n$ time algorithm for 2-median or 2-center?

Thank you for engaging!