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Dominating Set Problem

G(V, E)

S ⊆ V is a Dominating Set of G if

∀u ∈ V :

} u ∈ S, or

} ∃ v ∈ S such that (u , v) ∈ E

Computational Problem: Given G
and k ∈ N, determine if ∃ S ⊆ V :

} S is a Dominating Set of G

} |S| ≤ k

−→ NP-Complete [Karp’72]

−→ ln |V | approximation is in P

[Slavík’96]

−→ (1 − ε) ln |V | approximation

is NP-Complete [DS’14]
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Parameterized Dominating Set Problem

Computational Problem: Given G and parameter k ∈ N,
determine if ∃ S ⊆ V :

} S is a Dominating Set of G
} |S| ≤ k

Fixed Parameter Tractability (FPT): The problem can be decided

in F(k) · poly(|V |) time, for some computable function F.

W[2]

W[1]

FPT

k-Vertex Cover

k-Clique

k-Dominating Set
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Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k:

} W[2] complete [DF’95]

} Trivial Algorithm: O(N k+1) time

} State of the Art: N k+o(1)
time [EG’04, PW’10]

} No N o(k)
time algorithm assuming ETH [CHKX’06]

} No O(N k−ε) algorithm assuming SETH [PW’10]

There exists δ > 0 such that no algorithm can solve 3-CNF-SAT

in O(2δn) time where n is the number of variables.

For every ε > 0, there exists `(ε) ∈ N such that no algorithm can

solve `-SAT in O(2(1−ε)n) time where n is the number of variables.
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FPT Approximability of Dominating Set Problem

FPT Approximability: The problem has a T(k) approximation

algorithm running in time F(k) · poly(N) time.

Approximate Parameterized Dominating Set Problem: Given a

graph G and parameter k distinguish between:

} ∃ a dominating set of size at most k

} There is no dominating set of size T(k) · k

Is there some computable function T for which the above

problem is in FPT?
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Previous Works

Two decades later:

} Any constant approximation is W[1]-hard [CL’16]

} No (log k)1/4 approximation algorithm in N o(√k)
time,

assuming ETH [CL’16]

} No T(k) approximation algorithm in N o(k)
time, assuming

Gap-ETH [CCKLMNT’17]

? Can we show every T(k) approximation is W[1]-hard?

? Can we show no T(k) approximation algorithm exists

running in time N o(k)
, assuming ETH?

? Can we show no T(k) approximation algorithm exists

running in time N k−ε
, assuming SETH?Y
e
s
!

There exists a constant δ > 0 such that any algorithm that, on input

a 3-SAT formula ϕ on n variables and O(n) clauses, can distinguish

between SAT(ϕ) � 1 and SAT(ϕ) < 0.9, must run in time at least 2
δn
.

N
o
P
C
P
M
ac
h
in
er
y
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Our Results

} Any T(k) approximation is W[1]-hard

} No T(k) approximation algorithm in N o(k)
time, assuming

ETH

} No T(k) approximation algorithm in N k−ε
time, assuming

SETH

} No T(k) approximation algorithm in N dk/2e−ε
time,

assuming k-SUM Hypothesis

All results obtained in an Unified Proof Framework!

k-SUM Problem: Given A1 , . . . ,Ak ⊆ [−N2k ,N2k] where N �
∑

i∈[k]
|Ai |,

determine whether there exist xi ∈ Ai ,∀i ∈ [k] such that

∑
i∈[k]

xi � 0.

k-SUM Hypothesis: For every integer k ≥ 3 and every ε > 0, no

O(N dk/2e−ε) time algorithm can solve the k-SUM problem.

6
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The Framework

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

PSP
W[1] , FPT

ETH

k-Sum Hyp.

PSP(MultEq)

PSP(SumZero)

SETH PSP(Disj)

MaxCover

Generalization of Distributed PCP Framework [ARW’17]

Orthogonal Vectors

PCP Vectors
Gap

Problems

in P

Gap-ETH

Reduction from

[CCKLMNT17]

Preprocessing StepGap Amplification Gap Translation
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Simultaneous Message Passing (SMP) Model

Player 1 Player 2 Player k

Referee

x1 x2 xk

f : {0, 1}m×k
→ {0, 1}

Public Randomness

Randomized Protocols:

Completeness: If f (x1 , . . . , xk ) � 1 then the referee always accepts

Soundness: If f (x1 , . . . , xk) � 0 then the referee accepts with probability ≤ s
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k-sum to Maxcover: Proof Sketch
k-SUM problem: Given A1 , . . . ,Ak ⊆ [−N2k ,N2k] where N �

∑
i∈[k]

|Ai |, determine

whether there exist xi ∈ Ai ,∀i ∈ [k] such that

∑
i∈[k]

xi � 0.

SumZero problem: Player i is given xi ∈ [−N2k ,N2k ] as input. Referee wants to

determine whether

∑
i∈[k]

xi � 0.

Consider the following randomized protocol for SumZero [Nisan’94]:

1. The players and referee jointly draw a prime p∗ in {p1 , . . . , pr} (log r random bits)

2. Player i sends xi mod p∗ to the referee (log p∗ bits)
3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If

∑
i∈[k]

xi � 0 then

∑
i∈[k]

xi mod p∗ � 0

Soundness: If

∑
i∈[k]

xi , 0 then the number of prime factors of

∑
i∈[k]

xi is at most

r∗ � 2k log N + log k. Therefore if r ≥ 2r∗ then the referee rejects with probability ≥ 1/2

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2
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k-sum to Maxcover: Proof Sketch (Continued)
Parameters of the SumZero protocol [Nisan’94]:

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

Γ(U,W, E)

W
U

p1

p2

pr

A1

A2

Ak

Nodes in pi are all (z1 , . . . , zk ) ∈ Zk
p

such that

∑
j∈[k]

z j � 0 mod pi

For every x ∈ A j and z � (z1 , . . . , zk) ∈ pi ,

(x , z) ∈ E ⇐⇒ z j � x mod pi

A labeling (x1 , . . . , xk) covers pi

⇐
⇒

The referee accepts on random prime pi

Soundness of SumZero protocol

⇐
⇒

Soundness of MaxCover
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Product Space Problems

Let f : {0, 1}m×k
→ {0, 1}

Problem: PSP( f )
Input: A

1
, . . .Ak ⊆ {0, 1}m

where |Ai | ≤ N

Output: Determine if ∃ ai ∈ Ai , ∀i ∈ [k], such that f (a
1
, . . . , ak) � 1

Product Space Problem (PSP)
Let m : N × N → N be any function and F be a family of Boolean functions

indexed by N and k as follows: F :� { fN,k : {0, 1}m(N,k)×k
→ {0, 1}}N,k∈N.

For each k ∈ N, the product space problem PSP(k ,F) of order N is defined as

follows: given k subsets A
1
, . . . ,Ak of {0, 1}m(N,k)

each of cardinality at most

N as input, determine if there exists (a
1
, . . . , ak) ∈ A

1
× · · · × Ak such that

fN,k(a1 , . . . , ak) � 1.

For the rest of the talk, m(N, k) � poly(k) · log N .
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N as input, determine if there exists (a
1
, . . . , ak) ∈ A

1
× · · · × Ak such that

fN,k(a1 , . . . , ak) � 1.

For the rest of the talk, m(N, k) � poly(k) · log N .
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The Framework Revisited

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

Disj : {0, 1}m×k
→ {0, 1},

Disj(x1 , . . . , xk) � ¬ *.
,

∨
i∈[m]

*.
,

∧
j∈[k]

(x j)i
+/
-

+/
-
.

SumZero : {0, 1}m×k
→ {0, 1},

SumZero(x1 , . . . , xk) �



1 if

∑
i∈[k]

xi � 0,

0 otherwise.
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Popular Hypotheses to PSP

SETH �⇒ PSP(Disj)

Let X � X
1
∪̇ · · · ∪̇Xk

For every partial assignment σ to Xi , we build aσ ∈ Ai ⊆ {0, 1}m
as follows:

aσ( j) �



0 if σ satisfies jth clause

1 otherwise

Note from above that ETH �⇒ PSP(Disj). We will skip ETH �⇒ PSP(MultEq)

W[1],FPT �⇒ PSP(MultEq)

Starting point: `-clique problem on graph G(V, E)
Let k �

�`
2

�
and set Ai � E, i.e., each edge ∈

({0, 1}log |V |
× {⊥,>}) `

Check for each vertex that the ` incident edges have assigned the same vertex

(equality checking)
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Maxcover [CCKLMNT’17]

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U,W, E)

Determine if MaxCover(Γ) � 1

or MaxCover(Γ) ≤ s

Each Wi is a Right Super Node

Each Ui is a Left Super Node

S ⊆ W is a labeling of W if

∀i ∈ [k], |S ∩Wi | � 1

S covers Ui if

∃u ∈ Ui , ∀v ∈ S, (u , v) ∈ E

MaxCover(Γ, S) � Fraction of

Ui’s covered by S

MaxCover(Γ) � max

S
MaxCover(Γ, S)
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PSP to Maxcover
Parameters of SMP protocol Π for f : {0, 1}m×k

→ {0, 1}:
Advice: γ bits Randomness: R bits

Message Length: L bits Soundness: s

Γ(U,W, E)

W
U

U1

U2

Ur

W1

W2

Wk

U1

U2

U
2

R

A1

A2

Ak

2

γ
instances of MaxCover

Nodes in Ui are all k-tuples of messages

that referee accepts on randomness i and
advice µ ∈ {0, 1}γ

For every x ∈ A j and z � (z1 , . . . , zk ) ∈ Ui ,

(x , z) ∈ E ⇐⇒ z j is message of player j on
input x and randomness i

Soundness of Π

⇐
⇒

Soundness of MaxCover
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Maxcover to Parameterized Dominating Set

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance Γ � *
,
U �

r⋃
j�1

U j ,W �
k⋃

j�1
Wi , E+

-
to

a k-DomSet instance G such that

} If MaxCover(Γ) � 1, then DomSet(G) � k

} If MaxCover(Γ) ≤ ε, then DomSet(G) ≥ (1/ε)1/k
· k

} |V(G)| � |W | + ∑
j∈[r]

k |U j |

} The reduction runs in time O *
,
|W | *

,

∑
j∈[r]

k |U j |+
-

+
-
.

We want 1/ε � ω(1) and |U j | � o(m)
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Required Parameters of SMP Protocols

Greedily we want SMP protocols:

Input: m bits Randomness: polylog(m) bits
Message Length: Ok(1) bits Soundness: 1/2

24



SMP Protocol for k-sumZero

SMP Protocol of Nisan [Nisan’94]:

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

SMP Protocol of Viola [Viola’15]:

Input: m bits Randomness: O(m) bits
Message Length: Ok(1) bits Soundness: 1/2

New SMP Protocol:

Input: m bits Randomness: Ok(log m) bits
Message Length: Ok(1) bits Soundness: 1/2
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Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

SMP Protocol of Viola [Viola’15]:

Input: m bits Randomness: O(m) bits
Message Length: Ok(1) bits Soundness: 1/2

New SMP Protocol:

Input: m bits Randomness: Ok(log m) bits
Message Length: Ok(1) bits Soundness: 1/2
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SMP Protocol for k-multiequality

Idea: Use any binary code of constant rate and distance δ

SMP Protocol Parameters:

Input: m bits Randomness: O(log m) bits
Message Length: O(1) bits Soundness: 1 − δ
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SMP Protocol for k-disjointness

A straightforward extension of Rubinstein’s two-party protocol [R’18,ARW’17,AW’09]

Good Pointwise Product (GPP) Codes
Let q be a prime power and k ∈ N. A code C over Fq is said to be a q-GHP code if

there exists a constant δ(k) > 0 such that the following holds.

} C is systematic and can be encoded efficiently.

} Let Ck
be the set of all k-pointwise product of codewords of C. Then, there exists

a linear good code C̃ such that Ck
⊆ C̃, i.e., C̃ has relative distance and rate

greater than δ.

} Player i divides his input xi into T parts x1

i , . . . x
T
i

} The advice µ of the referee is

∑
j∈[T]

∏
`∈[k]

C(x j
`) – a codeword of C̃!

} Referee checks that µ is zero in the systematic part and on a random coordinate

Advice: Ok(m/T log q) bits Randomness: Ok(log m) bits
Message Length: T log q bits Soundness: 1 − δ
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SMP Protocol for k-disjointness (continued)

SMP Protocol Parameters:

Advice: Ok(m/T log q) bits Randomness: Ok(log m) bits
Message Length: T log q bits Soundness: 1 − δ

Reed Solomon Codes
Let ` ∈ N and q be a prime number in [4`, 8`). Then, there exists a q-GPP

code of message length `.

Algebraic Geometric Codes [GS’96, SAKSD’01]
There exists a constant c ∈ N such that for any prime number q greater than

c there is a q2-GPP code for every message length ` ∈ N.
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Recap of the Results

} Any T(k) approximation is W[1]-hard

} No T(k) approximation algorithm in N o(k)
time, assuming

ETH

} No T(k) approximation algorithm in N k−ε
time, assuming

SETH

} No T(k) approximation algorithm in N dk/2e−ε
time,

assuming k-SUM Hypothesis
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Summary of the Framework

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]
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Important Open Questions

} Parameterized Dominating Set is W[2]-complete. Can we

show every T(k) approximation is also W[2]-hard?

} Parameterized Clique is W[1]-complete. Can we show

every T(k) approximation is also W[1]-hard? Can we show

1.01 approximation is W[1]-hard?
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Open Questions

} Are there natural problems in PSP which do not have

efficient MA protocols?

} Conceptually/Philosophically can we say something about

the various time hypotheses?
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