
A Parameterized Framework for
Hardness of Approximation

Karthik C. S.

(Weizmann Institute of Science)

Joint work with

Bundit Laekhanukit

(Shanghai University of

Finance and Economics)

Pasin Manurangsi

(UC Berkeley)

Dominating Set Problem

G(V, E)

S ⊆ V is a Dominating Set of G if

∀u ∈ V :

} u ∈ S, or

} ∃ v ∈ S such that (u , v) ∈ E

Computational Problem: Given G
and k ∈ N, determine if ∃ S ⊆ V :

} S is a Dominating Set of G

} |S| ≤ k

−→ NP-Complete [Karp’72]

−→ ln |V | approximation is in P

[Slavík’96]

−→ (1 − ε) ln |V | approximation

is NP-Complete [DS’14]

1

Dominating Set Problem

G(V, E)

S ⊆ V is a Dominating Set of G if

∀u ∈ V :

} u ∈ S, or

} ∃ v ∈ S such that (u , v) ∈ E

Computational Problem: Given G
and k ∈ N, determine if ∃ S ⊆ V :

} S is a Dominating Set of G

} |S| ≤ k

−→ NP-Complete [Karp’72]

−→ ln |V | approximation is in P

[Slavík’96]

−→ (1 − ε) ln |V | approximation

is NP-Complete [DS’14]

1

Dominating Set Problem

G(V, E)

S ⊆ V is a Dominating Set of G if

∀u ∈ V :

} u ∈ S, or

} ∃ v ∈ S such that (u , v) ∈ E

Computational Problem: Given G
and k ∈ N, determine if ∃ S ⊆ V :

} S is a Dominating Set of G

} |S| ≤ k

−→ NP-Complete [Karp’72]

−→ ln |V | approximation is in P

[Slavík’96]

−→ (1 − ε) ln |V | approximation

is NP-Complete [DS’14]

1

Dominating Set Problem

G(V, E)

S ⊆ V is a Dominating Set of G if

∀u ∈ V :

} u ∈ S, or

} ∃ v ∈ S such that (u , v) ∈ E

Computational Problem: Given G
and k ∈ N, determine if ∃ S ⊆ V :

} S is a Dominating Set of G

} |S| ≤ k

−→ NP-Complete [Karp’72]

−→ ln |V | approximation is in P

[Slavík’96]

−→ (1 − ε) ln |V | approximation

is NP-Complete [DS’14]

1

Dominating Set Problem

G(V, E)

S ⊆ V is a Dominating Set of G if

∀u ∈ V :

} u ∈ S, or

} ∃ v ∈ S such that (u , v) ∈ E

Computational Problem: Given G
and k ∈ N, determine if ∃ S ⊆ V :

} S is a Dominating Set of G

} |S| ≤ k

−→ NP-Complete [Karp’72]

−→ ln |V | approximation is in P

[Slavík’96]

−→ (1 − ε) ln |V | approximation

is NP-Complete [DS’14]

1

Dominating Set Problem

G(V, E)

S ⊆ V is a Dominating Set of G if

∀u ∈ V :

} u ∈ S, or

} ∃ v ∈ S such that (u , v) ∈ E

Computational Problem: Given G
and k ∈ N, determine if ∃ S ⊆ V :

} S is a Dominating Set of G

} |S| ≤ k

−→ NP-Complete [Karp’72]

−→ ln |V | approximation is in P

[Slavík’96]

−→ (1 − ε) ln |V | approximation

is NP-Complete [DS’14]

1

Dominating Set Problem

G(V, E)

S ⊆ V is a Dominating Set of G if

∀u ∈ V :

} u ∈ S, or

} ∃ v ∈ S such that (u , v) ∈ E

Computational Problem: Given G
and k ∈ N, determine if ∃ S ⊆ V :

} S is a Dominating Set of G

} |S| ≤ k

−→ NP-Complete [Karp’72]

−→ ln |V | approximation is in P

[Slavík’96]

−→ (1 − ε) ln |V | approximation

is NP-Complete [DS’14]

1

Parameterized Dominating Set Problem

Computational Problem: Given G and parameter k ∈ N,
determine if ∃ S ⊆ V :

} S is a Dominating Set of G
} |S| ≤ k

Fixed Parameter Tractability (FPT): The problem can be decided

in F(k) · poly(|V |) time, for some computable function F.

W[2]

W[1]

FPT

k-Vertex Cover

k-Clique

k-Dominating Set

2

Parameterized Dominating Set Problem

Computational Problem: Given G and parameter k ∈ N,
determine if ∃ S ⊆ V :

} S is a Dominating Set of G
} |S| ≤ k

Fixed Parameter Tractability (FPT): The problem can be decided

in F(k) · poly(|V |) time, for some computable function F.

W[2]

W[1]

FPT

k-Vertex Cover

k-Clique

k-Dominating Set

2

Parameterized Dominating Set Problem

Computational Problem: Given G and parameter k ∈ N,
determine if ∃ S ⊆ V :

} S is a Dominating Set of G
} |S| ≤ k

Fixed Parameter Tractability (FPT): The problem can be decided

in F(k) · poly(|V |) time, for some computable function F.

W[2]

W[1]

FPT

k-Vertex Cover

k-Clique

k-Dominating Set

2

Parameterized Dominating Set Problem

Computational Problem: Given G and parameter k ∈ N,
determine if ∃ S ⊆ V :

} S is a Dominating Set of G
} |S| ≤ k

Fixed Parameter Tractability (FPT): The problem can be decided

in F(k) · poly(|V |) time, for some computable function F.

W[2]

W[1]

FPT

k-Vertex Cover

k-Clique

k-Dominating Set

2

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k:

} W[2] complete [DF’95]

} Trivial Algorithm: O(N k+1) time

} State of the Art: N k+o(1)
time [EG’04, PW’10]

} No N o(k)
time algorithm assuming ETH [CHKX’06]

} No O(N k−ε) algorithm assuming SETH [PW’10]

There exists δ > 0 such that no algorithm can solve 3-CNF-SAT

in O(2δn) time where n is the number of variables.

For every ε > 0, there exists `(ε) ∈ N such that no algorithm can

solve `-SAT in O(2(1−ε)n) time where n is the number of variables.

3

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k:

} W[2] complete [DF’95]

} Trivial Algorithm: O(N k+1) time

} State of the Art: N k+o(1)
time [EG’04, PW’10]

} No N o(k)
time algorithm assuming ETH [CHKX’06]

} No O(N k−ε) algorithm assuming SETH [PW’10]

There exists δ > 0 such that no algorithm can solve 3-CNF-SAT

in O(2δn) time where n is the number of variables.

For every ε > 0, there exists `(ε) ∈ N such that no algorithm can

solve `-SAT in O(2(1−ε)n) time where n is the number of variables.

3

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k:

} W[2] complete [DF’95]

} Trivial Algorithm: O(N k+1) time

} State of the Art: N k+o(1)
time [EG’04, PW’10]

} No N o(k)
time algorithm assuming ETH [CHKX’06]

} No O(N k−ε) algorithm assuming SETH [PW’10]

There exists δ > 0 such that no algorithm can solve 3-CNF-SAT

in O(2δn) time where n is the number of variables.

For every ε > 0, there exists `(ε) ∈ N such that no algorithm can

solve `-SAT in O(2(1−ε)n) time where n is the number of variables.

3

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k:

} W[2] complete [DF’95]

} Trivial Algorithm: O(N k+1) time

} State of the Art: N k+o(1)
time [EG’04, PW’10]

} No N o(k)
time algorithm assuming ETH [CHKX’06]

} No O(N k−ε) algorithm assuming SETH [PW’10]

There exists δ > 0 such that no algorithm can solve 3-CNF-SAT

in O(2δn) time where n is the number of variables.

For every ε > 0, there exists `(ε) ∈ N such that no algorithm can

solve `-SAT in O(2(1−ε)n) time where n is the number of variables.

3

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k:

} W[2] complete [DF’95]

} Trivial Algorithm: O(N k+1) time

} State of the Art: N k+o(1)
time [EG’04, PW’10]

} No N o(k)
time algorithm assuming ETH [CHKX’06]

} No O(N k−ε) algorithm assuming SETH [PW’10]

There exists δ > 0 such that no algorithm can solve 3-CNF-SAT

in O(2δn) time where n is the number of variables.

For every ε > 0, there exists `(ε) ∈ N such that no algorithm can

solve `-SAT in O(2(1−ε)n) time where n is the number of variables.

3

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k:

} W[2] complete [DF’95]

} Trivial Algorithm: O(N k+1) time

} State of the Art: N k+o(1)
time [EG’04, PW’10]

} No N o(k)
time algorithm assuming ETH [CHKX’06]

} No O(N k−ε) algorithm assuming SETH [PW’10]

There exists δ > 0 such that no algorithm can solve 3-CNF-SAT

in O(2δn) time where n is the number of variables.

For every ε > 0, there exists `(ε) ∈ N such that no algorithm can

solve `-SAT in O(2(1−ε)n) time where n is the number of variables.

3

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k:

} W[2] complete [DF’95]

} Trivial Algorithm: O(N k+1) time

} State of the Art: N k+o(1)
time [EG’04, PW’10]

} No N o(k)
time algorithm assuming ETH [CHKX’06]

} No O(N k−ε) algorithm assuming SETH [PW’10]

There exists δ > 0 such that no algorithm can solve 3-CNF-SAT

in O(2δn) time where n is the number of variables.

For every ε > 0, there exists `(ε) ∈ N such that no algorithm can

solve `-SAT in O(2(1−ε)n) time where n is the number of variables.

3

FPT Approximability of Dominating Set Problem

FPT Approximability: The problem has a T(k) approximation

algorithm running in time F(k) · poly(N) time.

Approximate Parameterized Dominating Set Problem: Given a

graph G and parameter k distinguish between:

} ∃ a dominating set of size at most k

} There is no dominating set of size T(k) · k

Is there some computable function T for which the above

problem is in FPT?

4

FPT Approximability of Dominating Set Problem

FPT Approximability: The problem has a T(k) approximation

algorithm running in time F(k) · poly(N) time.

Approximate Parameterized Dominating Set Problem: Given a

graph G and parameter k distinguish between:

} ∃ a dominating set of size at most k

} There is no dominating set of size T(k) · k

Is there some computable function T for which the above

problem is in FPT?

4

FPT Approximability of Dominating Set Problem

FPT Approximability: The problem has a T(k) approximation

algorithm running in time F(k) · poly(N) time.

Approximate Parameterized Dominating Set Problem: Given a

graph G and parameter k distinguish between:

} ∃ a dominating set of size at most k

} There is no dominating set of size T(k) · k

Is there some computable function T for which the above

problem is in FPT?

4

Previous Works

Two decades later:

} Any constant approximation is W[1]-hard [CL’16]

} No (log k)1/4 approximation algorithm in N o(√k)
time,

assuming ETH [CL’16]

} No T(k) approximation algorithm in N o(k)
time, assuming

Gap-ETH [CCKLMNT’17]

? Can we show every T(k) approximation is W[1]-hard?

? Can we show no T(k) approximation algorithm exists

running in time N o(k)
, assuming ETH?

? Can we show no T(k) approximation algorithm exists

running in time N k−ε
, assuming SETH?Y
e
s
!

There exists a constant δ > 0 such that any algorithm that, on input

a 3-SAT formula ϕ on n variables and O(n) clauses, can distinguish

between SAT(ϕ) � 1 and SAT(ϕ) < 0.9, must run in time at least 2
δn
.

N
o
P
C
P
M
ac
h
in
er
y

5

Previous Works

Two decades later:

} Any constant approximation is W[1]-hard [CL’16]

} No (log k)1/4 approximation algorithm in N o(√k)
time,

assuming ETH [CL’16]

} No T(k) approximation algorithm in N o(k)
time, assuming

Gap-ETH [CCKLMNT’17]

? Can we show every T(k) approximation is W[1]-hard?

? Can we show no T(k) approximation algorithm exists

running in time N o(k)
, assuming ETH?

? Can we show no T(k) approximation algorithm exists

running in time N k−ε
, assuming SETH?Y
e
s
!

There exists a constant δ > 0 such that any algorithm that, on input

a 3-SAT formula ϕ on n variables and O(n) clauses, can distinguish

between SAT(ϕ) � 1 and SAT(ϕ) < 0.9, must run in time at least 2
δn
.

N
o
P
C
P
M
ac
h
in
er
y

5

Previous Works

Two decades later:

} Any constant approximation is W[1]-hard [CL’16]

} No (log k)1/4 approximation algorithm in N o(√k)
time,

assuming ETH [CL’16]

} No T(k) approximation algorithm in N o(k)
time, assuming

Gap-ETH [CCKLMNT’17]

? Can we show every T(k) approximation is W[1]-hard?

? Can we show no T(k) approximation algorithm exists

running in time N o(k)
, assuming ETH?

? Can we show no T(k) approximation algorithm exists

running in time N k−ε
, assuming SETH?Y
e
s
!

There exists a constant δ > 0 such that any algorithm that, on input

a 3-SAT formula ϕ on n variables and O(n) clauses, can distinguish

between SAT(ϕ) � 1 and SAT(ϕ) < 0.9, must run in time at least 2
δn
.

N
o
P
C
P
M
ac
h
in
er
y

5

Previous Works

Two decades later:

} Any constant approximation is W[1]-hard [CL’16]

} No (log k)1/4 approximation algorithm in N o(√k)
time,

assuming ETH [CL’16]

} No T(k) approximation algorithm in N o(k)
time, assuming

Gap-ETH [CCKLMNT’17]

? Can we show every T(k) approximation is W[1]-hard?

? Can we show no T(k) approximation algorithm exists

running in time N o(k)
, assuming ETH?

? Can we show no T(k) approximation algorithm exists

running in time N k−ε
, assuming SETH?Y
e
s
!

There exists a constant δ > 0 such that any algorithm that, on input

a 3-SAT formula ϕ on n variables and O(n) clauses, can distinguish

between SAT(ϕ) � 1 and SAT(ϕ) < 0.9, must run in time at least 2
δn
.

N
o
P
C
P
M
ac
h
in
er
y

5

Previous Works

Two decades later:

} Any constant approximation is W[1]-hard [CL’16]

} No (log k)1/4 approximation algorithm in N o(√k)
time,

assuming ETH [CL’16]

} No T(k) approximation algorithm in N o(k)
time, assuming

Gap-ETH [CCKLMNT’17]

? Can we show every T(k) approximation is W[1]-hard?

? Can we show no T(k) approximation algorithm exists

running in time N o(k)
, assuming ETH?

? Can we show no T(k) approximation algorithm exists

running in time N k−ε
, assuming SETH?Y
e
s
!

There exists a constant δ > 0 such that any algorithm that, on input

a 3-SAT formula ϕ on n variables and O(n) clauses, can distinguish

between SAT(ϕ) � 1 and SAT(ϕ) < 0.9, must run in time at least 2
δn
.

N
o
P
C
P
M
ac
h
in
er
y

5

Previous Works

Two decades later:

} Any constant approximation is W[1]-hard [CL’16]

} No (log k)1/4 approximation algorithm in N o(√k)
time,

assuming ETH [CL’16]

} No T(k) approximation algorithm in N o(k)
time, assuming

Gap-ETH [CCKLMNT’17]

? Can we show every T(k) approximation is W[1]-hard?

? Can we show no T(k) approximation algorithm exists

running in time N o(k)
, assuming ETH?

? Can we show no T(k) approximation algorithm exists

running in time N k−ε
, assuming SETH?Y
e
s
!

There exists a constant δ > 0 such that any algorithm that, on input

a 3-SAT formula ϕ on n variables and O(n) clauses, can distinguish

between SAT(ϕ) � 1 and SAT(ϕ) < 0.9, must run in time at least 2
δn
.

N
o
P
C
P
M
ac
h
in
er
y

5

Previous Works

Two decades later:

} Any constant approximation is W[1]-hard [CL’16]

} No (log k)1/4 approximation algorithm in N o(√k)
time,

assuming ETH [CL’16]

} No T(k) approximation algorithm in N o(k)
time, assuming

Gap-ETH [CCKLMNT’17]

? Can we show every T(k) approximation is W[1]-hard?

? Can we show no T(k) approximation algorithm exists

running in time N o(k)
, assuming ETH?

? Can we show no T(k) approximation algorithm exists

running in time N k−ε
, assuming SETH?Y
e
s
!

There exists a constant δ > 0 such that any algorithm that, on input

a 3-SAT formula ϕ on n variables and O(n) clauses, can distinguish

between SAT(ϕ) � 1 and SAT(ϕ) < 0.9, must run in time at least 2
δn
.

N
o
P
C
P
M
ac
h
in
er
y

5

Previous Works

Two decades later:

} Any constant approximation is W[1]-hard [CL’16]

} No (log k)1/4 approximation algorithm in N o(√k)
time,

assuming ETH [CL’16]

} No T(k) approximation algorithm in N o(k)
time, assuming

Gap-ETH [CCKLMNT’17]

? Can we show every T(k) approximation is W[1]-hard?

? Can we show no T(k) approximation algorithm exists

running in time N o(k)
, assuming ETH?

? Can we show no T(k) approximation algorithm exists

running in time N k−ε
, assuming SETH?

Y
e
s
!

There exists a constant δ > 0 such that any algorithm that, on input

a 3-SAT formula ϕ on n variables and O(n) clauses, can distinguish

between SAT(ϕ) � 1 and SAT(ϕ) < 0.9, must run in time at least 2
δn
.

N
o
P
C
P
M
ac
h
in
er
y

5

Previous Works

Two decades later:

} Any constant approximation is W[1]-hard [CL’16]

} No (log k)1/4 approximation algorithm in N o(√k)
time,

assuming ETH [CL’16]

} No T(k) approximation algorithm in N o(k)
time, assuming

Gap-ETH [CCKLMNT’17]

? Can we show every T(k) approximation is W[1]-hard?

? Can we show no T(k) approximation algorithm exists

running in time N o(k)
, assuming ETH?

? Can we show no T(k) approximation algorithm exists

running in time N k−ε
, assuming SETH?

Y
e
s
!

There exists a constant δ > 0 such that any algorithm that, on input

a 3-SAT formula ϕ on n variables and O(n) clauses, can distinguish

between SAT(ϕ) � 1 and SAT(ϕ) < 0.9, must run in time at least 2
δn
.

N
o
P
C
P
M
ac
h
in
er
y

5

Previous Works

Two decades later:

} Any constant approximation is W[1]-hard [CL’16]

} No (log k)1/4 approximation algorithm in N o(√k)
time,

assuming ETH [CL’16]

} No T(k) approximation algorithm in N o(k)
time, assuming

Gap-ETH [CCKLMNT’17]

? Can we show every T(k) approximation is W[1]-hard?

? Can we show no T(k) approximation algorithm exists

running in time N o(k)
, assuming ETH?

? Can we show no T(k) approximation algorithm exists

running in time N k−ε
, assuming SETH?

Y
e
s
!

There exists a constant δ > 0 such that any algorithm that, on input

a 3-SAT formula ϕ on n variables and O(n) clauses, can distinguish

between SAT(ϕ) � 1 and SAT(ϕ) < 0.9, must run in time at least 2
δn
.

N
o
P
C
P
M
ac
h
in
er
y

5

Previous Works

Two decades later:

} Any constant approximation is W[1]-hard [CL’16]

} No (log k)1/4 approximation algorithm in N o(√k)
time,

assuming ETH [CL’16]

} No T(k) approximation algorithm in N o(k)
time, assuming

Gap-ETH [CCKLMNT’17]

? Can we show every T(k) approximation is W[1]-hard?

? Can we show no T(k) approximation algorithm exists

running in time N o(k)
, assuming ETH?

? Can we show no T(k) approximation algorithm exists

running in time N k−ε
, assuming SETH?Y
e
s
!

There exists a constant δ > 0 such that any algorithm that, on input

a 3-SAT formula ϕ on n variables and O(n) clauses, can distinguish

between SAT(ϕ) � 1 and SAT(ϕ) < 0.9, must run in time at least 2
δn
.

N
o
P
C
P
M
ac
h
in
er
y

5

Our Results

} Any T(k) approximation is W[1]-hard

} No T(k) approximation algorithm in N o(k)
time, assuming

ETH

} No T(k) approximation algorithm in N k−ε
time, assuming

SETH

} No T(k) approximation algorithm in N dk/2e−ε
time,

assuming k-SUM Hypothesis

All results obtained in an Unified Proof Framework!

k-SUM Problem: Given A1 , . . . ,Ak ⊆ [−N2k ,N2k] where N �
∑

i∈[k]
|Ai |,

determine whether there exist xi ∈ Ai ,∀i ∈ [k] such that

∑
i∈[k]

xi � 0.

k-SUM Hypothesis: For every integer k ≥ 3 and every ε > 0, no

O(N dk/2e−ε) time algorithm can solve the k-SUM problem.

6

Our Results

} Any T(k) approximation is W[1]-hard

} No T(k) approximation algorithm in N o(k)
time, assuming

ETH

} No T(k) approximation algorithm in N k−ε
time, assuming

SETH

} No T(k) approximation algorithm in N dk/2e−ε
time,

assuming k-SUM Hypothesis

All results obtained in an Unified Proof Framework!

k-SUM Problem: Given A1 , . . . ,Ak ⊆ [−N2k ,N2k] where N �
∑

i∈[k]
|Ai |,

determine whether there exist xi ∈ Ai ,∀i ∈ [k] such that

∑
i∈[k]

xi � 0.

k-SUM Hypothesis: For every integer k ≥ 3 and every ε > 0, no

O(N dk/2e−ε) time algorithm can solve the k-SUM problem.

6

Our Results

} Any T(k) approximation is W[1]-hard

} No T(k) approximation algorithm in N o(k)
time, assuming

ETH

} No T(k) approximation algorithm in N k−ε
time, assuming

SETH

} No T(k) approximation algorithm in N dk/2e−ε
time,

assuming k-SUM Hypothesis

All results obtained in an Unified Proof Framework!

k-SUM Problem: Given A1 , . . . ,Ak ⊆ [−N2k ,N2k] where N �
∑

i∈[k]
|Ai |,

determine whether there exist xi ∈ Ai ,∀i ∈ [k] such that

∑
i∈[k]

xi � 0.

k-SUM Hypothesis: For every integer k ≥ 3 and every ε > 0, no

O(N dk/2e−ε) time algorithm can solve the k-SUM problem.

6

Our Results

} Any T(k) approximation is W[1]-hard

} No T(k) approximation algorithm in N o(k)
time, assuming

ETH

} No T(k) approximation algorithm in N k−ε
time, assuming

SETH

} No T(k) approximation algorithm in N dk/2e−ε
time,

assuming k-SUM Hypothesis

All results obtained in an Unified Proof Framework!

k-SUM Problem: Given A1 , . . . ,Ak ⊆ [−N2k ,N2k] where N �
∑

i∈[k]
|Ai |,

determine whether there exist xi ∈ Ai ,∀i ∈ [k] such that

∑
i∈[k]

xi � 0.

k-SUM Hypothesis: For every integer k ≥ 3 and every ε > 0, no

O(N dk/2e−ε) time algorithm can solve the k-SUM problem.

6

The Framework

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

PSP
W[1] , FPT

ETH

k-Sum Hyp.

PSP(MultEq)

PSP(SumZero)

SETH PSP(Disj)

MaxCover

Generalization of Distributed PCP Framework [ARW’17]

Orthogonal Vectors

PCP Vectors
Gap

Problems

in P

Gap-ETH

Reduction from

[CCKLMNT17]

Preprocessing StepGap Amplification Gap Translation

7

The Framework

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

PSP
W[1] , FPT

ETH

k-Sum Hyp.

PSP(MultEq)

PSP(SumZero)

SETH PSP(Disj)
MaxCover

Generalization of Distributed PCP Framework [ARW’17]

Orthogonal Vectors

PCP Vectors
Gap

Problems

in P

Gap-ETH

Reduction from

[CCKLMNT17]

Preprocessing StepGap Amplification Gap Translation

7

The Framework

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

PSP
W[1] , FPT

ETH

k-Sum Hyp.

PSP(MultEq)

PSP(SumZero)

SETH PSP(Disj)

MaxCover

Generalization of Distributed PCP Framework [ARW’17]

Orthogonal Vectors

PCP Vectors
Gap

Problems

in P

Gap-ETH

Reduction from

[CCKLMNT17]

Preprocessing Step

Gap Amplification Gap Translation

7

The Framework

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

PSP
W[1] , FPT

ETH

k-Sum Hyp.

PSP(MultEq)

PSP(SumZero)

SETH PSP(Disj)

MaxCover

Generalization of Distributed PCP Framework [ARW’17]

Orthogonal Vectors

PCP Vectors
Gap

Problems

in P

Gap-ETH

Reduction from

[CCKLMNT17]

Preprocessing Step

Gap Amplification

Gap Translation

7

The Framework

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

PSP
W[1] , FPT

ETH

k-Sum Hyp.

PSP(MultEq)

PSP(SumZero)

SETH PSP(Disj)

MaxCover

Generalization of Distributed PCP Framework [ARW’17]

Orthogonal Vectors

PCP Vectors
Gap

Problems

in P

Gap-ETH

Reduction from

[CCKLMNT17]

Preprocessing StepGap Amplification

Gap Translation

7

The Framework

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

PSP
W[1] , FPT

ETH

k-Sum Hyp.

PSP(MultEq)

PSP(SumZero)

SETH PSP(Disj)
MaxCover

Generalization of Distributed PCP Framework [ARW’17]

Orthogonal Vectors

PCP Vectors
Gap

Problems

in P

Gap-ETH

Reduction from

[CCKLMNT17]

Preprocessing StepGap Amplification Gap Translation

7

The Framework

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

PSP
W[1] , FPT

ETH

k-Sum Hyp.

PSP(MultEq)

PSP(SumZero)

SETH PSP(Disj)
MaxCover

Generalization of Distributed PCP Framework [ARW’17]

Orthogonal Vectors

PCP Vectors
Gap

Problems

in P

Gap-ETH

Reduction from

[CCKLMNT17]

Preprocessing StepGap Amplification Gap Translation

7

The Framework Revisited

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

8

Simultaneous Message Passing (SMP) Model

Player 1 Player 2 Player k

Referee

x1 x2 xk

f : {0, 1}m×k
→ {0, 1}

Public Randomness

Randomized Protocols:

Completeness: If f (x1 , . . . , xk) � 1 then the referee always accepts

Soundness: If f (x1 , . . . , xk) � 0 then the referee accepts with probability ≤ s

9

Simultaneous Message Passing (SMP) Model

Player 1 Player 2 Player k

Referee

x1 x2 xk

f : {0, 1}m×k
→ {0, 1}

Public Randomness

Randomized Protocols:

Completeness: If f (x1 , . . . , xk) � 1 then the referee always accepts

Soundness: If f (x1 , . . . , xk) � 0 then the referee accepts with probability ≤ s

9

Simultaneous Message Passing (SMP) Model

Player 1 Player 2 Player k

Referee

x1 x2 xk

f : {0, 1}m×k
→ {0, 1}

Public Randomness

Randomized Protocols:

Completeness: If f (x1 , . . . , xk) � 1 then the referee always accepts

Soundness: If f (x1 , . . . , xk) � 0 then the referee accepts with probability ≤ s

9

Simultaneous Message Passing (SMP) Model

Player 1 Player 2 Player k

Referee

x1 x2 xk

f : {0, 1}m×k
→ {0, 1}

Public Randomness

Randomized Protocols:

Completeness: If f (x1 , . . . , xk) � 1 then the referee always accepts

Soundness: If f (x1 , . . . , xk) � 0 then the referee accepts with probability ≤ s

9

Simultaneous Message Passing (SMP) Model

Player 1 Player 2 Player k

Referee

x1 x2 xk

f : {0, 1}m×k
→ {0, 1}

Public Randomness

Randomized Protocols:

Completeness: If f (x1 , . . . , xk) � 1 then the referee always accepts

Soundness: If f (x1 , . . . , xk) � 0 then the referee accepts with probability ≤ s

9

Simultaneous Message Passing (SMP) Model

Player 1 Player 2 Player k

Referee

x1 x2 xk

f : {0, 1}m×k
→ {0, 1}

Public Randomness

Randomized Protocols:

Completeness: If f (x1 , . . . , xk) � 1 then the referee always accepts

Soundness: If f (x1 , . . . , xk) � 0 then the referee accepts with probability ≤ s

9

Simultaneous Message Passing (SMP) Model

Player 1 Player 2 Player k

Referee

x1 x2 xk

f : {0, 1}m×k
→ {0, 1}

Public Randomness

Randomized Protocols:

Completeness: If f (x1 , . . . , xk) � 1 then the referee always accepts

Soundness: If f (x1 , . . . , xk) � 0 then the referee accepts with probability ≤ s

9

Simultaneous Message Passing (SMP) Model

Player 1 Player 2 Player k

Referee

x1 x2 xk

f : {0, 1}m×k
→ {0, 1}

Public Randomness

Randomized Protocols:

Completeness: If f (x1 , . . . , xk) � 1 then the referee always accepts

Soundness: If f (x1 , . . . , xk) � 0 then the referee accepts with probability ≤ s 9

Simultaneous Message Passing (SMP) Model

Referee

Player 1 Player 2 Player k

f : {0, 1}m×k
→ {0, 1}

Public Randomness

x1 x2 xk

µ ∈ {0, 1}o(m)

MA Protocols:

Completeness: If f (x1 , . . . , xk) � 1 then there exists µ for which referee always accepts

Soundness: If f (x1 , . . . , xk) � 0 then for all µ, the referee accepts with probability ≤ s

8

Simultaneous Message Passing (SMP) Model

Referee

Player 1 Player 2 Player k

f : {0, 1}m×k
→ {0, 1}

Public Randomness

x1 x2 xk

µ ∈ {0, 1}o(m)

MA Protocols:

Completeness: If f (x1 , . . . , xk) � 1 then there exists µ for which referee always accepts

Soundness: If f (x1 , . . . , xk) � 0 then for all µ, the referee accepts with probability ≤ s

8

Simultaneous Message Passing (SMP) Model

Referee

Player 1 Player 2 Player k

f : {0, 1}m×k
→ {0, 1}

Public Randomness

x1 x2 xk

µ ∈ {0, 1}o(m)

MA Protocols:

Completeness: If f (x1 , . . . , xk) � 1 then there exists µ for which referee always accepts

Soundness: If f (x1 , . . . , xk) � 0 then for all µ, the referee accepts with probability ≤ s 8

The Framework Revisited

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

10

k-sum to Maxcover: Proof Sketch
k-SUM problem: Given A1 , . . . ,Ak ⊆ [−N2k ,N2k] where N �

∑
i∈[k]

|Ai |, determine

whether there exist xi ∈ Ai ,∀i ∈ [k] such that

∑
i∈[k]

xi � 0.

SumZero problem: Player i is given xi ∈ [−N2k ,N2k] as input. Referee wants to

determine whether

∑
i∈[k]

xi � 0.

Consider the following randomized protocol for SumZero [Nisan’94]:

1. The players and referee jointly draw a prime p∗ in {p1 , . . . , pr} (log r random bits)

2. Player i sends xi mod p∗ to the referee (log p∗ bits)
3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If

∑
i∈[k]

xi � 0 then

∑
i∈[k]

xi mod p∗ � 0

Soundness: If

∑
i∈[k]

xi , 0 then the number of prime factors of

∑
i∈[k]

xi is at most

r∗ � 2k log N + log k. Therefore if r ≥ 2r∗ then the referee rejects with probability ≥ 1/2

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

11

k-sum to Maxcover: Proof Sketch
k-SUM problem: Given A1 , . . . ,Ak ⊆ [−N2k ,N2k] where N �

∑
i∈[k]

|Ai |, determine

whether there exist xi ∈ Ai ,∀i ∈ [k] such that

∑
i∈[k]

xi � 0.

SumZero problem: Player i is given xi ∈ [−N2k ,N2k] as input. Referee wants to

determine whether

∑
i∈[k]

xi � 0.

Consider the following randomized protocol for SumZero [Nisan’94]:

1. The players and referee jointly draw a prime p∗ in {p1 , . . . , pr} (log r random bits)

2. Player i sends xi mod p∗ to the referee (log p∗ bits)
3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If

∑
i∈[k]

xi � 0 then

∑
i∈[k]

xi mod p∗ � 0

Soundness: If

∑
i∈[k]

xi , 0 then the number of prime factors of

∑
i∈[k]

xi is at most

r∗ � 2k log N + log k. Therefore if r ≥ 2r∗ then the referee rejects with probability ≥ 1/2

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

11

k-sum to Maxcover: Proof Sketch
k-SUM problem: Given A1 , . . . ,Ak ⊆ [−N2k ,N2k] where N �

∑
i∈[k]

|Ai |, determine

whether there exist xi ∈ Ai ,∀i ∈ [k] such that

∑
i∈[k]

xi � 0.

SumZero problem: Player i is given xi ∈ [−N2k ,N2k] as input. Referee wants to

determine whether

∑
i∈[k]

xi � 0.

Consider the following randomized protocol for SumZero [Nisan’94]:

1. The players and referee jointly draw a prime p∗ in {p1 , . . . , pr} (log r random bits)

2. Player i sends xi mod p∗ to the referee (log p∗ bits)
3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If

∑
i∈[k]

xi � 0 then

∑
i∈[k]

xi mod p∗ � 0

Soundness: If

∑
i∈[k]

xi , 0 then the number of prime factors of

∑
i∈[k]

xi is at most

r∗ � 2k log N + log k. Therefore if r ≥ 2r∗ then the referee rejects with probability ≥ 1/2

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

11

k-sum to Maxcover: Proof Sketch
k-SUM problem: Given A1 , . . . ,Ak ⊆ [−N2k ,N2k] where N �

∑
i∈[k]

|Ai |, determine

whether there exist xi ∈ Ai ,∀i ∈ [k] such that

∑
i∈[k]

xi � 0.

SumZero problem: Player i is given xi ∈ [−N2k ,N2k] as input. Referee wants to

determine whether

∑
i∈[k]

xi � 0.

Consider the following randomized protocol for SumZero [Nisan’94]:

1. The players and referee jointly draw a prime p∗ in {p1 , . . . , pr} (log r random bits)

2. Player i sends xi mod p∗ to the referee (log p∗ bits)
3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If

∑
i∈[k]

xi � 0 then

∑
i∈[k]

xi mod p∗ � 0

Soundness: If

∑
i∈[k]

xi , 0 then the number of prime factors of

∑
i∈[k]

xi is at most

r∗ � 2k log N + log k. Therefore if r ≥ 2r∗ then the referee rejects with probability ≥ 1/2

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

11

k-sum to Maxcover: Proof Sketch
k-SUM problem: Given A1 , . . . ,Ak ⊆ [−N2k ,N2k] where N �

∑
i∈[k]

|Ai |, determine

whether there exist xi ∈ Ai ,∀i ∈ [k] such that

∑
i∈[k]

xi � 0.

SumZero problem: Player i is given xi ∈ [−N2k ,N2k] as input. Referee wants to

determine whether

∑
i∈[k]

xi � 0.

Consider the following randomized protocol for SumZero [Nisan’94]:

1. The players and referee jointly draw a prime p∗ in {p1 , . . . , pr} (log r random bits)

2. Player i sends xi mod p∗ to the referee (log p∗ bits)
3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If

∑
i∈[k]

xi � 0 then

∑
i∈[k]

xi mod p∗ � 0

Soundness: If

∑
i∈[k]

xi , 0 then the number of prime factors of

∑
i∈[k]

xi is at most

r∗ � 2k log N + log k.

Therefore if r ≥ 2r∗ then the referee rejects with probability ≥ 1/2

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

11

k-sum to Maxcover: Proof Sketch
k-SUM problem: Given A1 , . . . ,Ak ⊆ [−N2k ,N2k] where N �

∑
i∈[k]

|Ai |, determine

whether there exist xi ∈ Ai ,∀i ∈ [k] such that

∑
i∈[k]

xi � 0.

SumZero problem: Player i is given xi ∈ [−N2k ,N2k] as input. Referee wants to

determine whether

∑
i∈[k]

xi � 0.

Consider the following randomized protocol for SumZero [Nisan’94]:

1. The players and referee jointly draw a prime p∗ in {p1 , . . . , pr} (log r random bits)

2. Player i sends xi mod p∗ to the referee (log p∗ bits)
3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If

∑
i∈[k]

xi � 0 then

∑
i∈[k]

xi mod p∗ � 0

Soundness: If

∑
i∈[k]

xi , 0 then the number of prime factors of

∑
i∈[k]

xi is at most

r∗ � 2k log N + log k. Therefore if r ≥ 2r∗ then the referee rejects with probability ≥ 1/2

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

11

k-sum to Maxcover: Proof Sketch
k-SUM problem: Given A1 , . . . ,Ak ⊆ [−N2k ,N2k] where N �

∑
i∈[k]

|Ai |, determine

whether there exist xi ∈ Ai ,∀i ∈ [k] such that

∑
i∈[k]

xi � 0.

SumZero problem: Player i is given xi ∈ [−N2k ,N2k] as input. Referee wants to

determine whether

∑
i∈[k]

xi � 0.

Consider the following randomized protocol for SumZero [Nisan’94]:

1. The players and referee jointly draw a prime p∗ in {p1 , . . . , pr} (log r random bits)

2. Player i sends xi mod p∗ to the referee (log p∗ bits)
3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If

∑
i∈[k]

xi � 0 then

∑
i∈[k]

xi mod p∗ � 0

Soundness: If

∑
i∈[k]

xi , 0 then the number of prime factors of

∑
i∈[k]

xi is at most

r∗ � 2k log N + log k. Therefore if r ≥ 2r∗ then the referee rejects with probability ≥ 1/2

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

11

k-sum to Maxcover: Proof Sketch (Continued)
Parameters of the SumZero protocol [Nisan’94]:

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

Γ(U,W, E)

W
U

p1

p2

pr

A1

A2

Ak

Nodes in pi are all (z1 , . . . , zk) ∈ Zk
p

such that

∑
j∈[k]

z j � 0 mod pi

For every x ∈ A j and z � (z1 , . . . , zk) ∈ pi ,

(x , z) ∈ E ⇐⇒ z j � x mod pi

A labeling (x1 , . . . , xk) covers pi

⇐
⇒

The referee accepts on random prime pi

Soundness of SumZero protocol

⇐
⇒

Soundness of MaxCover

12

k-sum to Maxcover: Proof Sketch (Continued)
Parameters of the SumZero protocol [Nisan’94]:

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

Γ(U,W, E)

W
U

p1

p2

pr

A1

A2

Ak

Nodes in pi are all (z1 , . . . , zk) ∈ Zk
p

such that

∑
j∈[k]

z j � 0 mod pi

For every x ∈ A j and z � (z1 , . . . , zk) ∈ pi ,

(x , z) ∈ E ⇐⇒ z j � x mod pi

A labeling (x1 , . . . , xk) covers pi

⇐
⇒

The referee accepts on random prime pi

Soundness of SumZero protocol

⇐
⇒

Soundness of MaxCover

12

k-sum to Maxcover: Proof Sketch (Continued)
Parameters of the SumZero protocol [Nisan’94]:

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

Γ(U,W, E)

W
U

p1

p2

pr

A1

A2

Ak

Nodes in pi are all (z1 , . . . , zk) ∈ Zk
p

such that

∑
j∈[k]

z j � 0 mod pi

For every x ∈ A j and z � (z1 , . . . , zk) ∈ pi ,

(x , z) ∈ E ⇐⇒ z j � x mod pi

A labeling (x1 , . . . , xk) covers pi

⇐
⇒

The referee accepts on random prime pi

Soundness of SumZero protocol

⇐
⇒

Soundness of MaxCover

12

k-sum to Maxcover: Proof Sketch (Continued)
Parameters of the SumZero protocol [Nisan’94]:

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

Γ(U,W, E)

W
U

p1

p2

pr

A1

A2

Ak

Nodes in pi are all (z1 , . . . , zk) ∈ Zk
p

such that

∑
j∈[k]

z j � 0 mod pi

For every x ∈ A j and z � (z1 , . . . , zk) ∈ pi ,

(x , z) ∈ E ⇐⇒ z j � x mod pi

A labeling (x1 , . . . , xk) covers pi

⇐
⇒

The referee accepts on random prime pi

Soundness of SumZero protocol

⇐
⇒

Soundness of MaxCover

12

k-sum to Maxcover: Proof Sketch (Continued)
Parameters of the SumZero protocol [Nisan’94]:

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

Γ(U,W, E)

W
U

p1

p2

pr

A1

A2

Ak

Nodes in pi are all (z1 , . . . , zk) ∈ Zk
p

such that

∑
j∈[k]

z j � 0 mod pi

For every x ∈ A j and z � (z1 , . . . , zk) ∈ pi ,

(x , z) ∈ E ⇐⇒ z j � x mod pi

A labeling (x1 , . . . , xk) covers pi

⇐
⇒

The referee accepts on random prime pi

Soundness of SumZero protocol

⇐
⇒

Soundness of MaxCover

12

k-sum to Maxcover: Proof Sketch (Continued)
Parameters of the SumZero protocol [Nisan’94]:

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

Γ(U,W, E)

W
U

p1

p2

pr

A1

A2

Ak

Nodes in pi are all (z1 , . . . , zk) ∈ Zk
p

such that

∑
j∈[k]

z j � 0 mod pi

For every x ∈ A j and z � (z1 , . . . , zk) ∈ pi ,

(x , z) ∈ E ⇐⇒ z j � x mod pi

A labeling (x1 , . . . , xk) covers pi

⇐
⇒

The referee accepts on random prime pi

Soundness of SumZero protocol

⇐
⇒

Soundness of MaxCover 12

The Framework Revisited

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

13

Product Space Problems

Let f : {0, 1}m×k
→ {0, 1}

Problem: PSP(f)
Input: A

1
, . . .Ak ⊆ {0, 1}m

where |Ai | ≤ N

Output: Determine if ∃ ai ∈ Ai , ∀i ∈ [k], such that f (a
1
, . . . , ak) � 1

Product Space Problem (PSP)
Let m : N × N → N be any function and F be a family of Boolean functions

indexed by N and k as follows: F :� { fN,k : {0, 1}m(N,k)×k
→ {0, 1}}N,k∈N.

For each k ∈ N, the product space problem PSP(k ,F) of order N is defined as

follows: given k subsets A
1
, . . . ,Ak of {0, 1}m(N,k)

each of cardinality at most

N as input, determine if there exists (a
1
, . . . , ak) ∈ A

1
× · · · × Ak such that

fN,k(a1 , . . . , ak) � 1.

For the rest of the talk, m(N, k) � poly(k) · log N .

14

Product Space Problems

Let f : {0, 1}m×k
→ {0, 1}

Problem: PSP(f)
Input: A

1
, . . .Ak ⊆ {0, 1}m

where |Ai | ≤ N

Output: Determine if ∃ ai ∈ Ai , ∀i ∈ [k], such that f (a
1
, . . . , ak) � 1

Product Space Problem (PSP)
Let m : N × N → N be any function and F be a family of Boolean functions

indexed by N and k as follows: F :� { fN,k : {0, 1}m(N,k)×k
→ {0, 1}}N,k∈N.

For each k ∈ N, the product space problem PSP(k ,F) of order N is defined as

follows: given k subsets A
1
, . . . ,Ak of {0, 1}m(N,k)

each of cardinality at most

N as input, determine if there exists (a
1
, . . . , ak) ∈ A

1
× · · · × Ak such that

fN,k(a1 , . . . , ak) � 1.

For the rest of the talk, m(N, k) � poly(k) · log N .

14

Product Space Problems

Let f : {0, 1}m×k
→ {0, 1}

Problem: PSP(f)
Input: A

1
, . . .Ak ⊆ {0, 1}m

where |Ai | ≤ N

Output: Determine if ∃ ai ∈ Ai , ∀i ∈ [k], such that f (a
1
, . . . , ak) � 1

Product Space Problem (PSP)
Let m : N × N → N be any function and F be a family of Boolean functions

indexed by N and k as follows: F :� { fN,k : {0, 1}m(N,k)×k
→ {0, 1}}N,k∈N.

For each k ∈ N, the product space problem PSP(k ,F) of order N is defined as

follows: given k subsets A
1
, . . . ,Ak of {0, 1}m(N,k)

each of cardinality at most

N as input, determine if there exists (a
1
, . . . , ak) ∈ A

1
× · · · × Ak such that

fN,k(a1 , . . . , ak) � 1.

For the rest of the talk, m(N, k) � poly(k) · log N .

14

Product Space Problems

Let f : {0, 1}m×k
→ {0, 1}

Problem: PSP(f)
Input: A

1
, . . .Ak ⊆ {0, 1}m

where |Ai | ≤ N

Output: Determine if ∃ ai ∈ Ai , ∀i ∈ [k], such that f (a
1
, . . . , ak) � 1

Product Space Problem (PSP)
Let m : N × N → N be any function and F be a family of Boolean functions

indexed by N and k as follows: F :� { fN,k : {0, 1}m(N,k)×k
→ {0, 1}}N,k∈N.

For each k ∈ N, the product space problem PSP(k ,F) of order N is defined as

follows: given k subsets A
1
, . . . ,Ak of {0, 1}m(N,k)

each of cardinality at most

N as input, determine if there exists (a
1
, . . . , ak) ∈ A

1
× · · · × Ak such that

fN,k(a1 , . . . , ak) � 1.

For the rest of the talk, m(N, k) � poly(k) · log N .

14

The Framework Revisited

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

Disj : {0, 1}m×k
→ {0, 1},

Disj(x1 , . . . , xk) � ¬ *.
,

∨
i∈[m]

*.
,

∧
j∈[k]

(x j)i
+/
-

+/
-
.

SumZero : {0, 1}m×k
→ {0, 1},

SumZero(x1 , . . . , xk) �

1 if

∑
i∈[k]

xi � 0,

0 otherwise.

15

The Framework Revisited

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

Disj : {0, 1}m×k
→ {0, 1},

Disj(x1 , . . . , xk) � ¬ *.
,

∨
i∈[m]

*.
,

∧
j∈[k]

(x j)i
+/
-

+/
-
.

SumZero : {0, 1}m×k
→ {0, 1},

SumZero(x1 , . . . , xk) �

1 if

∑
i∈[k]

xi � 0,

0 otherwise.
15

The Framework Revisited

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

Disj : {0, 1}m×k
→ {0, 1},

Disj(x1 , . . . , xk) � ¬ *.
,

∨
i∈[m]

*.
,

∧
j∈[k]

(x j)i
+/
-

+/
-
.

SumZero : {0, 1}m×k
→ {0, 1},

SumZero(x1 , . . . , xk) �

1 if

∑
i∈[k]

xi � 0,

0 otherwise.

15

The Framework Revisited

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

Disj : {0, 1}m×k
→ {0, 1},

Disj(x1 , . . . , xk) � ¬ *.
,

∨
i∈[m]

*.
,

∧
j∈[k]

(x j)i
+/
-

+/
-
.

SumZero : {0, 1}m×k
→ {0, 1},

SumZero(x1 , . . . , xk) �

1 if

∑
i∈[k]

xi � 0,

0 otherwise.

15

The Framework Revisited

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

16

Popular Hypotheses to PSP

SETH �⇒ PSP(Disj)

Let X � X
1
∪̇ · · · ∪̇Xk

For every partial assignment σ to Xi , we build aσ ∈ Ai ⊆ {0, 1}m
as follows:

aσ(j) �

0 if σ satisfies jth clause

1 otherwise

Note from above that ETH �⇒ PSP(Disj). We will skip ETH �⇒ PSP(MultEq)

W[1],FPT �⇒ PSP(MultEq)

Starting point: `-clique problem on graph G(V, E)
Let k �

�`
2

�
and set Ai � E, i.e., each edge ∈

({0, 1}log |V |
× {⊥,>}) `

Check for each vertex that the ` incident edges have assigned the same vertex

(equality checking)

17

Popular Hypotheses to PSP

SETH �⇒ PSP(Disj)

Let X � X
1
∪̇ · · · ∪̇Xk

For every partial assignment σ to Xi , we build aσ ∈ Ai ⊆ {0, 1}m
as follows:

aσ(j) �

0 if σ satisfies jth clause

1 otherwise

Note from above that ETH �⇒ PSP(Disj). We will skip ETH �⇒ PSP(MultEq)

W[1],FPT �⇒ PSP(MultEq)

Starting point: `-clique problem on graph G(V, E)
Let k �

�`
2

�
and set Ai � E, i.e., each edge ∈

({0, 1}log |V |
× {⊥,>}) `

Check for each vertex that the ` incident edges have assigned the same vertex

(equality checking)

17

Popular Hypotheses to PSP

SETH �⇒ PSP(Disj)

Let X � X
1
∪̇ · · · ∪̇Xk

For every partial assignment σ to Xi , we build aσ ∈ Ai ⊆ {0, 1}m
as follows:

aσ(j) �

0 if σ satisfies jth clause

1 otherwise

Note from above that ETH �⇒ PSP(Disj). We will skip ETH �⇒ PSP(MultEq)

W[1],FPT �⇒ PSP(MultEq)

Starting point: `-clique problem on graph G(V, E)
Let k �

�`
2

�
and set Ai � E, i.e., each edge ∈

({0, 1}log |V |
× {⊥,>}) `

Check for each vertex that the ` incident edges have assigned the same vertex

(equality checking)

17

Popular Hypotheses to PSP

SETH �⇒ PSP(Disj)

Let X � X
1
∪̇ · · · ∪̇Xk

For every partial assignment σ to Xi , we build aσ ∈ Ai ⊆ {0, 1}m
as follows:

aσ(j) �

0 if σ satisfies jth clause

1 otherwise

Note from above that ETH �⇒ PSP(Disj). We will skip ETH �⇒ PSP(MultEq)

W[1],FPT �⇒ PSP(MultEq)

Starting point: `-clique problem on graph G(V, E)
Let k �

�`
2

�
and set Ai � E, i.e., each edge ∈

({0, 1}log |V |
× {⊥,>}) `

Check for each vertex that the ` incident edges have assigned the same vertex

(equality checking)

17

Popular Hypotheses to PSP

SETH �⇒ PSP(Disj)

Let X � X
1
∪̇ · · · ∪̇Xk

For every partial assignment σ to Xi , we build aσ ∈ Ai ⊆ {0, 1}m
as follows:

aσ(j) �

0 if σ satisfies jth clause

1 otherwise

Note from above that ETH �⇒ PSP(Disj). We will skip ETH �⇒ PSP(MultEq)

W[1],FPT �⇒ PSP(MultEq)

Starting point: `-clique problem on graph G(V, E)

Let k �
�`
2

�
and set Ai � E, i.e., each edge ∈

({0, 1}log |V |
× {⊥,>}) `

Check for each vertex that the ` incident edges have assigned the same vertex

(equality checking)

17

Popular Hypotheses to PSP

SETH �⇒ PSP(Disj)

Let X � X
1
∪̇ · · · ∪̇Xk

For every partial assignment σ to Xi , we build aσ ∈ Ai ⊆ {0, 1}m
as follows:

aσ(j) �

0 if σ satisfies jth clause

1 otherwise

Note from above that ETH �⇒ PSP(Disj). We will skip ETH �⇒ PSP(MultEq)

W[1],FPT �⇒ PSP(MultEq)

Starting point: `-clique problem on graph G(V, E)
Let k �

�`
2

�
and set Ai � E, i.e., each edge ∈

({0, 1}log |V |
× {⊥,>}) `

Check for each vertex that the ` incident edges have assigned the same vertex

(equality checking)

17

Popular Hypotheses to PSP

SETH �⇒ PSP(Disj)

Let X � X
1
∪̇ · · · ∪̇Xk

For every partial assignment σ to Xi , we build aσ ∈ Ai ⊆ {0, 1}m
as follows:

aσ(j) �

0 if σ satisfies jth clause

1 otherwise

Note from above that ETH �⇒ PSP(Disj). We will skip ETH �⇒ PSP(MultEq)

W[1],FPT �⇒ PSP(MultEq)

Starting point: `-clique problem on graph G(V, E)
Let k �

�`
2

�
and set Ai � E, i.e., each edge ∈

({0, 1}log |V |
× {⊥,>}) `

Check for each vertex that the ` incident edges have assigned the same vertex

(equality checking)

17

The Framework Revisited

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

18

Maxcover [CCKLMNT’17]

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U,W, E)

Determine if MaxCover(Γ) � 1

or MaxCover(Γ) ≤ s

Each Wi is a Right Super Node

Each Ui is a Left Super Node

S ⊆ W is a labeling of W if

∀i ∈ [k], |S ∩Wi | � 1

S covers Ui if

∃u ∈ Ui , ∀v ∈ S, (u , v) ∈ E

MaxCover(Γ, S) � Fraction of

Ui’s covered by S

MaxCover(Γ) � max

S
MaxCover(Γ, S)

19

Maxcover [CCKLMNT’17]

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U,W, E)

Determine if MaxCover(Γ) � 1

or MaxCover(Γ) ≤ s

Each Wi is a Right Super Node

Each Ui is a Left Super Node

S ⊆ W is a labeling of W if

∀i ∈ [k], |S ∩Wi | � 1

S covers Ui if

∃u ∈ Ui , ∀v ∈ S, (u , v) ∈ E

MaxCover(Γ, S) � Fraction of

Ui’s covered by S

MaxCover(Γ) � max

S
MaxCover(Γ, S)

19

Maxcover [CCKLMNT’17]

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U,W, E)

Determine if MaxCover(Γ) � 1

or MaxCover(Γ) ≤ s

Each Wi is a Right Super Node

Each Ui is a Left Super Node

S ⊆ W is a labeling of W if

∀i ∈ [k], |S ∩Wi | � 1

S covers Ui if

∃u ∈ Ui , ∀v ∈ S, (u , v) ∈ E

MaxCover(Γ, S) � Fraction of

Ui’s covered by S

MaxCover(Γ) � max

S
MaxCover(Γ, S)

19

Maxcover [CCKLMNT’17]

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U,W, E)

Determine if MaxCover(Γ) � 1

or MaxCover(Γ) ≤ s

Each Wi is a Right Super Node

Each Ui is a Left Super Node

S ⊆ W is a labeling of W if

∀i ∈ [k], |S ∩Wi | � 1

S covers Ui if

∃u ∈ Ui , ∀v ∈ S, (u , v) ∈ E

MaxCover(Γ, S) � Fraction of

Ui’s covered by S

MaxCover(Γ) � max

S
MaxCover(Γ, S)

19

Maxcover [CCKLMNT’17]

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U,W, E)

Determine if MaxCover(Γ) � 1

or MaxCover(Γ) ≤ s

Each Wi is a Right Super Node

Each Ui is a Left Super Node

S ⊆ W is a labeling of W if

∀i ∈ [k], |S ∩Wi | � 1

S covers Ui if

∃u ∈ Ui , ∀v ∈ S, (u , v) ∈ E

MaxCover(Γ, S) � Fraction of

Ui’s covered by S

MaxCover(Γ) � max

S
MaxCover(Γ, S)

19

Maxcover [CCKLMNT’17]

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U,W, E)

Determine if MaxCover(Γ) � 1

or MaxCover(Γ) ≤ s

Each Wi is a Right Super Node

Each Ui is a Left Super Node

S ⊆ W is a labeling of W if

∀i ∈ [k], |S ∩Wi | � 1

S covers Ui if

∃u ∈ Ui , ∀v ∈ S, (u , v) ∈ E

MaxCover(Γ, S) � Fraction of

Ui’s covered by S

MaxCover(Γ) � max

S
MaxCover(Γ, S)

19

Maxcover [CCKLMNT’17]

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U,W, E)

Determine if MaxCover(Γ) � 1

or MaxCover(Γ) ≤ s

Each Wi is a Right Super Node

Each Ui is a Left Super Node

S ⊆ W is a labeling of W if

∀i ∈ [k], |S ∩Wi | � 1

S covers Ui if

∃u ∈ Ui , ∀v ∈ S, (u , v) ∈ E

MaxCover(Γ, S) � Fraction of

Ui’s covered by S

MaxCover(Γ) � max

S
MaxCover(Γ, S)

19

The Framework Revisited

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

20

PSP to Maxcover
Parameters of SMP protocol Π for f : {0, 1}m×k

→ {0, 1}:
Advice: γ bits Randomness: R bits

Message Length: L bits Soundness: s

Γ(U,W, E)

W
U

U1

U2

Ur

W1

W2

Wk

U1

U2

U
2

R

A1

A2

Ak

2

γ
instances of MaxCover

Nodes in Ui are all k-tuples of messages

that referee accepts on randomness i and
advice µ ∈ {0, 1}γ

For every x ∈ A j and z � (z1 , . . . , zk) ∈ Ui ,

(x , z) ∈ E ⇐⇒ z j is message of player j on
input x and randomness i

Soundness of Π

⇐
⇒

Soundness of MaxCover

21

PSP to Maxcover
Parameters of SMP protocol Π for f : {0, 1}m×k

→ {0, 1}:
Advice: γ bits Randomness: R bits

Message Length: L bits Soundness: s

Γ(U,W, E)

W
U

U1

U2

Ur

W1

W2

Wk

U1

U2

U
2

R

A1

A2

Ak

2

γ
instances of MaxCover

Nodes in Ui are all k-tuples of messages

that referee accepts on randomness i and
advice µ ∈ {0, 1}γ

For every x ∈ A j and z � (z1 , . . . , zk) ∈ Ui ,

(x , z) ∈ E ⇐⇒ z j is message of player j on
input x and randomness i

Soundness of Π

⇐
⇒

Soundness of MaxCover

21

PSP to Maxcover
Parameters of SMP protocol Π for f : {0, 1}m×k

→ {0, 1}:
Advice: γ bits Randomness: R bits

Message Length: L bits Soundness: s

Γ(U,W, E)

W
U

U1

U2

Ur

W1

W2

Wk

U1

U2

U
2

R

A1

A2

Ak

2

γ
instances of MaxCover

Nodes in Ui are all k-tuples of messages

that referee accepts on randomness i and
advice µ ∈ {0, 1}γ

For every x ∈ A j and z � (z1 , . . . , zk) ∈ Ui ,

(x , z) ∈ E ⇐⇒ z j is message of player j on
input x and randomness i

Soundness of Π

⇐
⇒

Soundness of MaxCover

21

PSP to Maxcover
Parameters of SMP protocol Π for f : {0, 1}m×k

→ {0, 1}:
Advice: γ bits Randomness: R bits

Message Length: L bits Soundness: s

Γ(U,W, E)

W
U

U1

U2

Ur

W1

W2

Wk

U1

U2

U
2

R

A1

A2

Ak

2

γ
instances of MaxCover

Nodes in Ui are all k-tuples of messages

that referee accepts on randomness i and
advice µ ∈ {0, 1}γ

For every x ∈ A j and z � (z1 , . . . , zk) ∈ Ui ,

(x , z) ∈ E ⇐⇒ z j is message of player j on
input x and randomness i

Soundness of Π

⇐
⇒

Soundness of MaxCover

21

PSP to Maxcover
Parameters of SMP protocol Π for f : {0, 1}m×k

→ {0, 1}:
Advice: γ bits Randomness: R bits

Message Length: L bits Soundness: s

Γ(U,W, E)

W
U

U1

U2

Ur

W1

W2

Wk

U1

U2

U
2

R

A1

A2

Ak

2

γ
instances of MaxCover

Nodes in Ui are all k-tuples of messages

that referee accepts on randomness i and
advice µ ∈ {0, 1}γ

For every x ∈ A j and z � (z1 , . . . , zk) ∈ Ui ,

(x , z) ∈ E ⇐⇒ z j is message of player j on
input x and randomness i

Soundness of Π

⇐
⇒

Soundness of MaxCover

21

PSP to Maxcover
Parameters of SMP protocol Π for f : {0, 1}m×k

→ {0, 1}:
Advice: γ bits Randomness: R bits

Message Length: L bits Soundness: s

Γ(U,W, E)

W
U

U1

U2

Ur

W1

W2

Wk

U1

U2

U
2

R

A1

A2

Ak

2

γ
instances of MaxCover

Nodes in Ui are all k-tuples of messages

that referee accepts on randomness i and
advice µ ∈ {0, 1}γ

For every x ∈ A j and z � (z1 , . . . , zk) ∈ Ui ,

(x , z) ∈ E ⇐⇒ z j is message of player j on
input x and randomness i

Soundness of Π

⇐
⇒

Soundness of MaxCover

21

PSP to Maxcover
Parameters of SMP protocol Π for f : {0, 1}m×k

→ {0, 1}:
Advice: γ bits Randomness: R bits

Message Length: L bits Soundness: s

Γ(U,W, E)

W
U

U1

U2

Ur

W1

W2

Wk

U1

U2

U
2

R

A1

A2

Ak

2

γ
instances of MaxCover

Nodes in Ui are all k-tuples of messages

that referee accepts on randomness i and
advice µ ∈ {0, 1}γ

For every x ∈ A j and z � (z1 , . . . , zk) ∈ Ui ,

(x , z) ∈ E ⇐⇒ z j is message of player j on
input x and randomness i

Soundness of Π

⇐
⇒

Soundness of MaxCover

21

The Framework Revisited

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

22

Maxcover to Parameterized Dominating Set

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance Γ � *
,
U �

r⋃
j�1

U j ,W �
k⋃

j�1
Wi , E+

-
to

a k-DomSet instance G such that

} If MaxCover(Γ) � 1, then DomSet(G) � k

} If MaxCover(Γ) ≤ ε, then DomSet(G) ≥ (1/ε)1/k
· k

} |V(G)| � |W | + ∑
j∈[r]

k |U j |

} The reduction runs in time O *
,
|W | *

,

∑
j∈[r]

k |U j |+
-

+
-
.

We want 1/ε � ω(1) and |U j | � o(m)

23

Maxcover to Parameterized Dominating Set

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance Γ � *
,
U �

r⋃
j�1

U j ,W �
k⋃

j�1
Wi , E+

-
to

a k-DomSet instance G such that

} If MaxCover(Γ) � 1, then DomSet(G) � k

} If MaxCover(Γ) ≤ ε, then DomSet(G) ≥ (1/ε)1/k
· k

} |V(G)| � |W | + ∑
j∈[r]

k |U j |

} The reduction runs in time O *
,
|W | *

,

∑
j∈[r]

k |U j |+
-

+
-
.

We want 1/ε � ω(1) and |U j | � o(m)

23

Maxcover to Parameterized Dominating Set

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance Γ � *
,
U �

r⋃
j�1

U j ,W �
k⋃

j�1
Wi , E+

-
to

a k-DomSet instance G such that

} If MaxCover(Γ) � 1, then DomSet(G) � k

} If MaxCover(Γ) ≤ ε, then DomSet(G) ≥ (1/ε)1/k
· k

} |V(G)| � |W | + ∑
j∈[r]

k |U j |

} The reduction runs in time O *
,
|W | *

,

∑
j∈[r]

k |U j |+
-

+
-
.

We want 1/ε � ω(1) and |U j | � o(m)

23

Maxcover to Parameterized Dominating Set

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance Γ � *
,
U �

r⋃
j�1

U j ,W �
k⋃

j�1
Wi , E+

-
to

a k-DomSet instance G such that

} If MaxCover(Γ) � 1, then DomSet(G) � k

} If MaxCover(Γ) ≤ ε, then DomSet(G) ≥ (1/ε)1/k
· k

} |V(G)| � |W | + ∑
j∈[r]

k |U j |

} The reduction runs in time O *
,
|W | *

,

∑
j∈[r]

k |U j |+
-

+
-
.

We want 1/ε � ω(1) and |U j | � o(m)

23

Maxcover to Parameterized Dominating Set

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance Γ � *
,
U �

r⋃
j�1

U j ,W �
k⋃

j�1
Wi , E+

-
to

a k-DomSet instance G such that

} If MaxCover(Γ) � 1, then DomSet(G) � k

} If MaxCover(Γ) ≤ ε, then DomSet(G) ≥ (1/ε)1/k
· k

} |V(G)| � |W | + ∑
j∈[r]

k |U j |

} The reduction runs in time O *
,
|W | *

,

∑
j∈[r]

k |U j |+
-

+
-
.

We want 1/ε � ω(1) and |U j | � o(m)
23

Required Parameters of SMP Protocols

Greedily we want SMP protocols:

Input: m bits Randomness: polylog(m) bits
Message Length: Ok(1) bits Soundness: 1/2

24

SMP Protocol for k-sumZero

SMP Protocol of Nisan [Nisan’94]:

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

SMP Protocol of Viola [Viola’15]:

Input: m bits Randomness: O(m) bits
Message Length: Ok(1) bits Soundness: 1/2

New SMP Protocol:

Input: m bits Randomness: Ok(log m) bits
Message Length: Ok(1) bits Soundness: 1/2

25

SMP Protocol for k-sumZero

SMP Protocol of Nisan [Nisan’94]:

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

SMP Protocol of Viola [Viola’15]:

Input: m bits Randomness: O(m) bits
Message Length: Ok(1) bits Soundness: 1/2

New SMP Protocol:

Input: m bits Randomness: Ok(log m) bits
Message Length: Ok(1) bits Soundness: 1/2

25

SMP Protocol for k-sumZero

SMP Protocol of Nisan [Nisan’94]:

Input: m bits Randomness: O(log m) bits
Message Length: O(log m) bits Soundness: 1/2

SMP Protocol of Viola [Viola’15]:

Input: m bits Randomness: O(m) bits
Message Length: Ok(1) bits Soundness: 1/2

New SMP Protocol:

Input: m bits Randomness: Ok(log m) bits
Message Length: Ok(1) bits Soundness: 1/2

25

SMP Protocol for k-multiequality

Idea: Use any binary code of constant rate and distance δ

SMP Protocol Parameters:

Input: m bits Randomness: O(log m) bits
Message Length: O(1) bits Soundness: 1 − δ

26

SMP Protocol for k-multiequality

Idea: Use any binary code of constant rate and distance δ

SMP Protocol Parameters:

Input: m bits Randomness: O(log m) bits
Message Length: O(1) bits Soundness: 1 − δ

26

SMP Protocol for k-disjointness

A straightforward extension of Rubinstein’s two-party protocol [R’18,ARW’17,AW’09]

Good Pointwise Product (GPP) Codes
Let q be a prime power and k ∈ N. A code C over Fq is said to be a q-GHP code if

there exists a constant δ(k) > 0 such that the following holds.

} C is systematic and can be encoded efficiently.

} Let Ck
be the set of all k-pointwise product of codewords of C. Then, there exists

a linear good code C̃ such that Ck
⊆ C̃, i.e., C̃ has relative distance and rate

greater than δ.

} Player i divides his input xi into T parts x1

i , . . . x
T
i

} The advice µ of the referee is

∑
j∈[T]

∏
`∈[k]

C(x j
`) – a codeword of C̃!

} Referee checks that µ is zero in the systematic part and on a random coordinate

Advice: Ok(m/T log q) bits Randomness: Ok(log m) bits
Message Length: T log q bits Soundness: 1 − δ

27

SMP Protocol for k-disjointness

A straightforward extension of Rubinstein’s two-party protocol [R’18,ARW’17,AW’09]

Good Pointwise Product (GPP) Codes
Let q be a prime power and k ∈ N. A code C over Fq is said to be a q-GHP code if

there exists a constant δ(k) > 0 such that the following holds.

} C is systematic and can be encoded efficiently.

} Let Ck
be the set of all k-pointwise product of codewords of C. Then, there exists

a linear good code C̃ such that Ck
⊆ C̃, i.e., C̃ has relative distance and rate

greater than δ.

} Player i divides his input xi into T parts x1

i , . . . x
T
i

} The advice µ of the referee is

∑
j∈[T]

∏
`∈[k]

C(x j
`) – a codeword of C̃!

} Referee checks that µ is zero in the systematic part and on a random coordinate

Advice: Ok(m/T log q) bits Randomness: Ok(log m) bits
Message Length: T log q bits Soundness: 1 − δ

27

SMP Protocol for k-disjointness

A straightforward extension of Rubinstein’s two-party protocol [R’18,ARW’17,AW’09]

Good Pointwise Product (GPP) Codes
Let q be a prime power and k ∈ N. A code C over Fq is said to be a q-GHP code if

there exists a constant δ(k) > 0 such that the following holds.

} C is systematic and can be encoded efficiently.

} Let Ck
be the set of all k-pointwise product of codewords of C. Then, there exists

a linear good code C̃ such that Ck
⊆ C̃, i.e., C̃ has relative distance and rate

greater than δ.

} Player i divides his input xi into T parts x1

i , . . . x
T
i

} The advice µ of the referee is

∑
j∈[T]

∏
`∈[k]

C(x j
`) – a codeword of C̃!

} Referee checks that µ is zero in the systematic part and on a random coordinate

Advice: Ok(m/T log q) bits Randomness: Ok(log m) bits
Message Length: T log q bits Soundness: 1 − δ

27

SMP Protocol for k-disjointness

A straightforward extension of Rubinstein’s two-party protocol [R’18,ARW’17,AW’09]

Good Pointwise Product (GPP) Codes
Let q be a prime power and k ∈ N. A code C over Fq is said to be a q-GHP code if

there exists a constant δ(k) > 0 such that the following holds.

} C is systematic and can be encoded efficiently.

} Let Ck
be the set of all k-pointwise product of codewords of C. Then, there exists

a linear good code C̃ such that Ck
⊆ C̃, i.e., C̃ has relative distance and rate

greater than δ.

} Player i divides his input xi into T parts x1

i , . . . x
T
i

} The advice µ of the referee is

∑
j∈[T]

∏
`∈[k]

C(x j
`) – a codeword of C̃!

} Referee checks that µ is zero in the systematic part and on a random coordinate

Advice: Ok(m/T log q) bits Randomness: Ok(log m) bits
Message Length: T log q bits Soundness: 1 − δ

27

SMP Protocol for k-disjointness

A straightforward extension of Rubinstein’s two-party protocol [R’18,ARW’17,AW’09]

Good Pointwise Product (GPP) Codes
Let q be a prime power and k ∈ N. A code C over Fq is said to be a q-GHP code if

there exists a constant δ(k) > 0 such that the following holds.

} C is systematic and can be encoded efficiently.

} Let Ck
be the set of all k-pointwise product of codewords of C. Then, there exists

a linear good code C̃ such that Ck
⊆ C̃, i.e., C̃ has relative distance and rate

greater than δ.

} Player i divides his input xi into T parts x1

i , . . . x
T
i

} The advice µ of the referee is

∑
j∈[T]

∏
`∈[k]

C(x j
`) – a codeword of C̃!

} Referee checks that µ is zero in the systematic part and on a random coordinate

Advice: Ok(m/T log q) bits Randomness: Ok(log m) bits
Message Length: T log q bits Soundness: 1 − δ

27

SMP Protocol for k-disjointness

A straightforward extension of Rubinstein’s two-party protocol [R’18,ARW’17,AW’09]

Good Pointwise Product (GPP) Codes
Let q be a prime power and k ∈ N. A code C over Fq is said to be a q-GHP code if

there exists a constant δ(k) > 0 such that the following holds.

} C is systematic and can be encoded efficiently.

} Let Ck
be the set of all k-pointwise product of codewords of C. Then, there exists

a linear good code C̃ such that Ck
⊆ C̃, i.e., C̃ has relative distance and rate

greater than δ.

} Player i divides his input xi into T parts x1

i , . . . x
T
i

} The advice µ of the referee is

∑
j∈[T]

∏
`∈[k]

C(x j
`) – a codeword of C̃!

} Referee checks that µ is zero in the systematic part and on a random coordinate

Advice: Ok(m/T log q) bits Randomness: Ok(log m) bits
Message Length: T log q bits Soundness: 1 − δ

27

SMP Protocol for k-disjointness (continued)

SMP Protocol Parameters:

Advice: Ok(m/T log q) bits Randomness: Ok(log m) bits
Message Length: T log q bits Soundness: 1 − δ

Reed Solomon Codes
Let ` ∈ N and q be a prime number in [4`, 8`). Then, there exists a q-GPP

code of message length `.

Algebraic Geometric Codes [GS’96, SAKSD’01]
There exists a constant c ∈ N such that for any prime number q greater than

c there is a q2-GPP code for every message length ` ∈ N.

28

SMP Protocol for k-disjointness (continued)

SMP Protocol Parameters:

Advice: Ok(m/T log q) bits Randomness: Ok(log m) bits
Message Length: T log q bits Soundness: 1 − δ

Reed Solomon Codes
Let ` ∈ N and q be a prime number in [4`, 8`). Then, there exists a q-GPP

code of message length `.

Algebraic Geometric Codes [GS’96, SAKSD’01]
There exists a constant c ∈ N such that for any prime number q greater than

c there is a q2-GPP code for every message length ` ∈ N.

28

SMP Protocol for k-disjointness (continued)

SMP Protocol Parameters:

Advice: Ok(m/T log q) bits Randomness: Ok(log m) bits
Message Length: T log q bits Soundness: 1 − δ

Reed Solomon Codes
Let ` ∈ N and q be a prime number in [4`, 8`). Then, there exists a q-GPP

code of message length `.

Algebraic Geometric Codes [GS’96, SAKSD’01]
There exists a constant c ∈ N such that for any prime number q greater than

c there is a q2-GPP code for every message length ` ∈ N.

28

Recap of the Results

} Any T(k) approximation is W[1]-hard

} No T(k) approximation algorithm in N o(k)
time, assuming

ETH

} No T(k) approximation algorithm in N k−ε
time, assuming

SETH

} No T(k) approximation algorithm in N dk/2e−ε
time,

assuming k-SUM Hypothesis

29

Summary of the Framework

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

30

Important Open Questions

} Parameterized Dominating Set is W[2]-complete. Can we

show every T(k) approximation is also W[2]-hard?

} Parameterized Clique is W[1]-complete. Can we show

every T(k) approximation is also W[1]-hard? Can we show

1.01 approximation is W[1]-hard?

31

Important Open Questions

} Parameterized Dominating Set is W[2]-complete. Can we

show every T(k) approximation is also W[2]-hard?

} Parameterized Clique is W[1]-complete. Can we show

every T(k) approximation is also W[1]-hard?

Can we show

1.01 approximation is W[1]-hard?

31

Important Open Questions

} Parameterized Dominating Set is W[2]-complete. Can we

show every T(k) approximation is also W[2]-hard?

} Parameterized Clique is W[1]-complete. Can we show

every T(k) approximation is also W[1]-hard? Can we show

1.01 approximation is W[1]-hard?

31

Open Questions

} Are there natural problems in PSP which do not have

efficient MA protocols?

} Conceptually/Philosophically can we say something about

the various time hypotheses?

32

Open Questions

} Are there natural problems in PSP which do not have

efficient MA protocols?

} Conceptually/Philosophically can we say something about

the various time hypotheses?

32

THANK

YOU!

33

The Framework

PSP
W[1] , FPT

ETH

SETH

k-Sum Hyp.

PSP(MultEq)

PSP(Disj)

PSP(SumZero)

MaxCover k-DomSet

Reduction from

[CCKLMNT17]

34

