A Parameterized Framework for Hardness of Approximation

Karthik C. S. (Weizmann Institute of Science)

Joint work with

Bundit Laekhanukit

(Shanghai University of Finance and Economics)

Pasin Manurangsi (UC Berkeley)

 $S \subseteq V$ is a Dominating Set of *G* if $\forall u \in V$:

 $\odot u \in S$, or

◎ $\exists v \in S$ such that $(u, v) \in E$

 $S \subseteq V$ is a Dominating Set of *G* if $\forall u \in V$:

$$\bigcirc$$
 $u \in S$, or

◎ $\exists v \in S$ such that $(u, v) \in E$

 $S \subseteq V$ is a Dominating Set of *G* if $\forall u \in V$:

$$\odot$$
 $u \in S$, or

◎ $\exists v \in S$ such that $(u, v) \in E$

Computational Problem: Given *G* and $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:

 \odot *S* is a Dominating Set of *G*

$$\odot$$
 $|S| \leq k$

 $S \subseteq V$ is a Dominating Set of *G* if $\forall u \in V$:

$$\odot$$
 $u \in S$, or

◎ $\exists v \in S$ such that $(u, v) \in E$

Computational Problem: Given *G* and $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:

 \odot *S* is a Dominating Set of *G*

 \odot $|S| \le k$

 \rightarrow NP-Complete [Karp'72]

G(V,E)

 \rightarrow ln |V| approximation is in P [Slavík'96] $S \subseteq V$ is a Dominating Set of *G* if $\forall u \in V$:

$$\odot$$
 $u \in S$, or

◎ $\exists v \in S$ such that $(u, v) \in E$

Computational Problem: Given *G* and $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:

 \odot *S* is a Dominating Set of *G*

$$\odot$$
 $|S| \le k$

 \rightarrow NP-Complete [Karp'72]

G(V, E)

- \longrightarrow ln |V| approximation is in P [Slavík'96]
- $\longrightarrow (1 \varepsilon) \ln |V| \text{ approximation}$ is **NP-Complete** [DS'14]

 $S \subseteq V$ is a Dominating Set of *G* if $\forall u \in V$:

$$\odot$$
 $u \in S$, or

◎ $\exists v \in S$ such that $(u, v) \in E$

Computational Problem: Given *G* and $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:

 \odot *S* is a Dominating Set of *G*

$$\odot$$
 $|S| \le k$

 \rightarrow NP-Complete [Karp'72]

Computational Problem: Given *G* and parameter $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:

- *S* is a Dominating Set of *G*
- \bigcirc $|S| \le k$

Computational Problem: Given *G* and parameter $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:

- \odot *S* is a Dominating Set of *G*
- $\bigcirc |S| \le k$

Fixed Parameter Tractability (FPT): The problem can be decided in $F(k) \cdot \text{poly}(|V|)$ time, for some computable function *F*.

Computational Problem: Given *G* and parameter $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:

- \odot *S* is a Dominating Set of *G*
- $\bigcirc |S| \le k$

Fixed Parameter Tractability (FPT): The problem can be decided in $F(k) \cdot \text{poly}(|V|)$ time, for some computable function *F*.

k-Dominating Set

k-Clique

k-Vertex Cover

Computational Problem: Given *G* and parameter $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:

- \odot *S* is a Dominating Set of *G*
- \odot $|S| \le k$

Fixed Parameter Tractability (FPT): The problem can be decided in $F(k) \cdot \text{poly}(|V|)$ time, for some computable function *F*.

Parameterized Complexity of Dominating Set Problem

Given graph on *N* vertices and parameter *k*:

◎ W[2] complete [DF'95]

Parameterized Complexity of Dominating Set Problem

- ◎ W[2] complete [DF'95]
- ◎ Trivial Algorithm: $O(N^{k+1})$ time

Parameterized Complexity of Dominating Set Problem

- ◎ W[2] complete [DF'95]
- ◎ Trivial Algorithm: $O(N^{k+1})$ time
- State of the Art: $N^{k+o(1)}$ time [EG'04, PW'10]

- ◎ W[2] complete [DF'95]
- \odot Trivial Algorithm: $O(N^{k+1})$ time
- ◎ State of the Art: $N^{k+o(1)}$ time [EG'04, PW'10]
- ◎ No *N*^{*o*(*k*)} time algorithm assuming ETH [CHKX′06]

- ◎ W[2] complete [DF'95]
- \odot Trivial Algorithm: $O(N^{k+1})$ time
- ◎ State of the Art: $N^{k+o(1)}$ time [EG'04, PW'10]
- ◎ No *N*^{o(k)} time algorithm assuming ETH [CHKX'06]

There exists $\delta > 0$ such that no algorithm can solve 3-CNF-SAT in $O(2^{\delta n})$ time where *n* is the number of variables.

- ◎ W[2] complete [DF'95]
- \odot Trivial Algorithm: $O(N^{k+1})$ time
- ◎ State of the Art: $N^{k+o(1)}$ time [EG'04, PW'10]
- ◎ No *N*^{*o*(*k*)} time algorithm assuming ETH [CHKX'06]
- ◎ No $O(N^{k-\varepsilon})$ algorithm assuming SETH [PW'10]

- ◎ W[2] complete [DF'95]
- \odot Trivial Algorithm: $O(N^{k+1})$ time
- ◎ State of the Art: $N^{k+o(1)}$ time [EG'04, PW'10]
- ◎ No *N*^{*o*(*k*)} time algorithm assuming ETH [CHKX′06]
- ◎ No $O(N^{k-\varepsilon})$ algorithm assuming SETH [PW'10]

For every $\varepsilon > 0$, there exists $\ell(\varepsilon) \in \mathbb{N}$ such that no algorithm can solve ℓ -SAT in $O(2^{(1-\varepsilon)n})$ time where *n* is the number of variables.

FPT Approximability of Dominating Set Problem

FPT Approximability: The problem has a T(k) approximation algorithm running in time $F(k) \cdot poly(N)$ time.

FPT Approximability: The problem has a T(k) approximation algorithm running in time $F(k) \cdot poly(N)$ time.

Approximate Parameterized Dominating Set Problem: Given a graph G and parameter k distinguish between:

- ◎ There is no dominating set of size $T(k) \cdot k$

FPT Approximability: The problem has a T(k) approximation algorithm running in time $F(k) \cdot poly(N)$ time.

Approximate Parameterized Dominating Set Problem: Given a graph G and parameter k distinguish between:

- \bigcirc ∃ a dominating set of size at most *k*
- ◎ There is no dominating set of size $T(k) \cdot k$

Is there some computable function *T* for which the above problem is in FPT?

Two decades later:

◎ Any constant approximation is W[1]-hard [CL'16]

- ◎ Any constant approximation is W[1]-hard [CL'16]
- ◎ No $(\log k)^{1/4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]

- ◎ Any constant approximation is W[1]-hard [CL'16]
- No $(\log k)^{1/4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
- No *T*(*k*) approximation algorithm in *N*^{o(k)} time, assuming Gap-ETH [CCKLMNT'17]

Two decades later:

- ◎ Any constant approximation is W[1]-hard [CL'16]
- No $(\log k)^{1/4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
- No *T*(*k*) approximation algorithm in *N*^{o(k)} time, assuming Gap-ETH [CCKLMNT'17]

There exists a constant $\delta > 0$ such that any algorithm that, on input a 3-SAT formula φ on *n* variables and O(n) clauses, can distinguish between SAT(φ) = 1 and SAT(φ) < 0.9, must run in time at least $2^{\delta n}$.

- Any constant approximation is W[1]-hard [CL'16]
- No $(\log k)^{1/4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
- No *T*(*k*) approximation algorithm in *N*^{o(k)} time, assuming Gap-ETH [CCKLMNT'17]
- ★ Can we show every T(k) approximation is W[1]-hard?

- ◎ Any constant approximation is W[1]-hard [CL'16]
- No $(\log k)^{1/4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
- No *T*(*k*) approximation algorithm in *N*^{o(k)} time, assuming Gap-ETH [CCKLMNT'17]
- ★ Can we show every T(k) approximation is W[1]-hard?
- ★ Can we show no *T*(*k*) approximation algorithm exists running in time *N*^{o(k)}, assuming ETH?

- ◎ Any constant approximation is W[1]-hard [CL'16]
- No $(\log k)^{1/4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
- No *T*(*k*) approximation algorithm in *N*^{o(k)} time, assuming Gap-ETH [CCKLMNT'17]
- ★ Can we show every T(k) approximation is W[1]-hard?
- ★ Can we show no *T*(*k*) approximation algorithm exists running in time *N*^{o(k)}, assuming ETH?
- ★ Can we show no T(k) approximation algorithm exists running in time $N^{k-\varepsilon}$, assuming SETH?

Two decades later:

- Machinery [CL'16] O Any constant approximation is
- \odot No $(\log k)^{1/4}$ approximately $\log k$ assuming **ETH**
- algorithm in $N^{o(k)}$ time, assuming ◎ No T() Gap-E MNT'17]

 $n N^{o(\sqrt{k})}$ time.

- ★ Can we show every T(k) approximation is W[1]-hard?
- **\star** Can we show no T(k) approximation algorithm exists running in time $N^{o(k)}$, assuming ETH?
- **\star** Can we show no *T*(*k*) approximation algorithm exists running in time $N^{k-\varepsilon}$, assuming SETH?

- ◎ Any constant approximation is W[1]-hard [CL'16]
- No $(\log k)^{1/4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
- No *T*(*k*) approximation algorithm in *N*^{o(k)} time, assuming Gap-ETH [CCKLMNT'17]
- ★ Can we show every T(k) approximation is W[1]-hard?
- ★ Can we show no *T*(*k*) approximation algorithm exists running in time *N*^{o(k)}, assuming ETH?
- ★ Can we show no T(k) approximation algorithm exists running in time $N^{k-\varepsilon}$, assuming SETH?

- ◎ Any constant approximation is W[1]-hard [CL'16]
- No $(\log k)^{1/4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
- No *T*(*k*) approximation algorithm in *N*^{o(k)} time, assuming Gap-ETH [CCKLMNT'17]
- ★ Can we show every T(k) opproximation is W[1]-hard?
- Can we show no T(k) approximation algorithm exists running in time M^{o(k)}, assuming ETH?
 Can we show no T(k) approximation algorithm exists
- * Can we show $\operatorname{her}^{(k)}(k)$ approximation algorithm exists running in time N^{k} , assuming SETH?

Our Results

- \odot Any T(k) approximation is W[1]-hard
- No T(k) approximation algorithm in $N^{o(k)}$ time, assuming ETH
- No T(k) approximation algorithm in $N^{k-\varepsilon}$ time, assuming SETH
- ◎ No T(k) approximation algorithm in $N^{\lceil k/2 \rceil \varepsilon}$ time, assuming *k*-SUM Hypothesis

Our Results

- \odot Any T(k) approximation is W[1]-hard
- No T(k) approximation algorithm in $N^{o(k)}$ time, assuming ETH
- No T(k) approximation algorithm in $N^{k-\varepsilon}$ time, assuming SETH
- ◎ No T(k) approximation algorithm in $N^{\lceil k/2 \rceil \varepsilon}$ time, assuming *k*-SUM Hypothesis

k-SUM Problem: Given $A_1, \ldots, A_k \subseteq [-N^{2k}, N^{2k}]$ where $N = \sum_{i \in [k]} |A_i|$, determine whether there exist $x_i \in A_i, \forall i \in [k]$ such that $\sum_{i \in [k]} x_i = 0$.

Our Results

- \odot Any T(k) approximation is W[1]-hard
- No *T*(*k*) approximation algorithm in *N*^{o(k)} time, assuming ETH
- No T(k) approximation algorithm in $N^{k-\varepsilon}$ time, assuming SETH
- No *T*(*k*) approximation algorithm in N^{[k/2]-ε} time, assuming *k*-SUM Hypothesis

k-SUM Problem: Given $A_1, \ldots, A_k \subseteq [-N^{2k}, N^{2k}]$ where $N = \sum_{i \in [k]} |A_i|$, determine whether there exist $x_i \in A_i, \forall i \in [k]$ such that $\sum_{i \in [k]} x_i = 0$. *k*-SUM Hypothesis: For every integer $k \ge 3$ and every $\varepsilon > 0$, no $O(N^{\lceil k/2 \rceil - \varepsilon})$ time algorithm can solve the *k*-SUM problem.
Our Results

- \odot Any T(k) approximation is W[1]-hard
- No *T*(*k*) approximation algorithm in *N*^{o(k)} time, assuming ETH
- No T(k) approximation algorithm in $N^{k-\varepsilon}$ time, assuming SETH
- No T(k) approximation algorithm in $N^{\lceil k/2 \rceil \varepsilon}$ time, assuming *k*-SUM Hypothesis

All results obtained in an Unified Proof Framework!

Generalization of Distributed PCP Framework [ARW'17]

Generalization of Distributed PCP Framework [ARW'17]

The Framework Revisited

Player k

$$f:\{0,1\}^{m\times k}\to\{0,1\}$$

Referee

Randomized Protocols:

Completeness: If $f(x_1, ..., x_k) = 1$ then the referee always accepts **Soundness:** If $f(x_1, ..., x_k) = 0$ then the referee accepts with probability $\leq s$

MA Protocols:

Completeness: If $f(x_1, ..., x_k) = 1$ then there exists μ for which referee always accepts Soundness: If $f(x_1, ..., x_k) = 0$ then for all μ , the referee accepts with probability $\leq s$

The Framework Revisited

k-SUM problem: Given $A_1, \ldots, A_k \subseteq [-N^{2k}, N^{2k}]$ where $N = \sum_{i \in [k]} |A_i|$, determine whether there exist $x_i \in A_i$, $\forall i \in [k]$ such that $\sum_{i \in [k]} x_i = 0$.

k-SUM problem: Given $A_1, \ldots, A_k \subseteq [-N^{2k}, N^{2k}]$ where $N = \sum_{i \in [k]} |A_i|$, determine whether there exist $x_i \in A_i$, $\forall i \in [k]$ such that $\sum_{i \in [k]} x_i = 0$.

SUMZERO problem: Player *i* is given $x_i \in [-N^{2k}, N^{2k}]$ as input. Referee wants to determine whether $\sum_{i \in [k]} x_i = 0$.

k-SUM problem: Given $A_1, \ldots, A_k \subseteq [-N^{2k}, N^{2k}]$ where $N = \sum_{i \in [k]} |A_i|$, determine whether there exist $x_i \in A_i$, $\forall i \in [k]$ such that $\sum_{i \in [k]} x_i = 0$.

SUMZERO problem: Player *i* is given $x_i \in [-N^{2k}, N^{2k}]$ as input. Referee wants to determine whether $\sum_{i \in [k]} x_i = 0$.

Consider the following randomized protocol for SUMZERO [Nisan'94]:

- 1. The players and referee jointly draw a prime p^* in $\{p_1, \ldots, p_r\}$ (log *r* random bits)
- 2. Player *i* sends $x_i \mod p^*$ to the referee (log p^* bits)
- 3. The referee accepts if the sum of all the numbers he receives is zero

k-SUM problem: Given $A_1, \ldots, A_k \subseteq [-N^{2k}, N^{2k}]$ where $N = \sum_{i \in [k]} |A_i|$, determine whether there exist $x_i \in A_i$, $\forall i \in [k]$ such that $\sum_{i \in [k]} x_i = 0$.

SUMZERO problem: Player *i* is given $x_i \in [-N^{2k}, N^{2k}]$ as input. Referee wants to determine whether $\sum_{i \in [k]} x_i = 0$.

Consider the following randomized protocol for SUMZERO [Nisan'94]:

- 1. The players and referee jointly draw a prime p^* in $\{p_1, \ldots, p_r\}$ (log *r* random bits)
- 2. Player *i* sends $x_i \mod p^*$ to the referee (log p^* bits)
- 3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If $\sum_{i \in [k]} x_i = 0$ then $\sum_{i \in [k]} x_i \mod p^* = 0$

k-SUM problem: Given $A_1, \ldots, A_k \subseteq [-N^{2k}, N^{2k}]$ where $N = \sum_{i \in [k]} |A_i|$, determine whether there exist $x_i \in A_i$, $\forall i \in [k]$ such that $\sum_{i \in [k]} x_i = 0$.

SUMZERO problem: Player *i* is given $x_i \in [-N^{2k}, N^{2k}]$ as input. Referee wants to determine whether $\sum_{i \in [k]} x_i = 0$.

Consider the following randomized protocol for SUMZERO [Nisan'94]:

- 1. The players and referee jointly draw a prime p^* in $\{p_1, \ldots, p_r\}$ (log *r* random bits)
- 2. Player *i* sends $x_i \mod p^*$ to the referee (log p^* bits)
- 3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If $\sum_{i \in [k]} x_i = 0$ then $\sum_{i \in [k]} x_i \mod p^* = 0$

Soundness: If $\sum_{i \in [k]} x_i \neq 0$ then the number of prime factors of $\sum_{i \in [k]} x_i$ is at most $r^* = 2k \log N + \log k$.

k-SUM problem: Given $A_1, \ldots, A_k \subseteq [-N^{2k}, N^{2k}]$ where $N = \sum_{i \in [k]} |A_i|$, determine whether there exist $x_i \in A_i$, $\forall i \in [k]$ such that $\sum_{i \in [k]} x_i = 0$.

SUMZERO problem: Player *i* is given $x_i \in [-N^{2k}, N^{2k}]$ as input. Referee wants to determine whether $\sum_{i \in [k]} x_i = 0$.

Consider the following randomized protocol for SumZERO [Nisan'94]:

- 1. The players and referee jointly draw a prime p^* in $\{p_1, \ldots, p_r\}$ (log *r* random bits)
- 2. Player *i* sends $x_i \mod p^*$ to the referee (log p^* bits)
- 3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If $\sum_{i \in [k]} x_i = 0$ then $\sum_{i \in [k]} x_i \mod p^* = 0$

Soundness: If $\sum_{i \in [k]} x_i \neq 0$ then the number of prime factors of $\sum_{i \in [k]} x_i$ is at most $r^* = 2k \log N + \log k$. Therefore if $r \ge 2r^*$ then the referee rejects with probability $\ge 1/2$

k-SUM problem: Given $A_1, \ldots, A_k \subseteq [-N^{2k}, N^{2k}]$ where $N = \sum_{i \in [k]} |A_i|$, determine whether there exist $x_i \in A_i$, $\forall i \in [k]$ such that $\sum_{i \in [k]} x_i = 0$.

SUMZERO problem: Player *i* is given $x_i \in [-N^{2k}, N^{2k}]$ as input. Referee wants to determine whether $\sum_{i \in [k]} x_i = 0$.

Consider the following randomized protocol for SumZERO [Nisan'94]:

- 1. The players and referee jointly draw a prime p^* in $\{p_1, \ldots, p_r\}$ (log *r* random bits)
- 2. Player *i* sends $x_i \mod p^*$ to the referee (log p^* bits)
- 3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If $\sum_{i \in [k]} x_i = 0$ then $\sum_{i \in [k]} x_i \mod p^* = 0$

Soundness: If $\sum_{i \in [k]} x_i \neq 0$ then the number of prime factors of $\sum_{i \in [k]} x_i$ is at most $r^* = 2k \log N + \log k$. Therefore if $r \ge 2r^*$ then the referee rejects with probability $\ge 1/2$

Input: *m* bits Randomness: *O*(log *m*) bits

Message Length: $O(\log m)$ bits Soundness: 1/2

Parameters of the SUMZERO protocol [Nisan'94]:

Input: *m* bits

Randomness: $O(\log m)$ bits

Message Length: $O(\log m)$ bits

Soundness: 1/2

Parameters of the SUMZERO protocol [Nisan'94]:

Input: *m* bits

Randomness: $O(\log m)$ bits

Message Length: $O(\log m)$ bits

Soundness: 1/2

Parameters of the SUMZERO protocol [Nisan'94]:

Input: *m* bits

Randomness: $O(\log m)$ bits

Message Length: $O(\log m)$ bits

Soundness: 1/2

Nodes in p_i are all $(z_1, ..., z_k) \in \mathbb{Z}_p^k$ such that $\sum_{j \in [k]} z_j = 0 \mod p_i$

Parameters of the SUMZERO protocol [Nisan'94]:

Input: *m* bits

Randomness: $O(\log m)$ bits

Message Length: $O(\log m)$ bits

Soundness: 1/2

Nodes in p_i are all $(z_1, \dots, z_k) \in \mathbb{Z}_p^k$ such that $\sum_{j \in [k]} z_j = 0 \mod p_i$

For every $x \in A_j$ and $z = (z_1, \dots, z_k) \in p_i$, $(x, z) \in E \iff z_j = x \mod p_i$

Parameters of the SUMZERO protocol [Nisan'94]:

Input: *m* bits

Randomness: $O(\log m)$ bits

Message Length: $O(\log m)$ bits

Soundness: 1/2

Nodes in p_i are all $(z_1, ..., z_k) \in \mathbb{Z}_p^k$ such that $\sum_{j \in [k]} z_j = 0 \mod p_i$

For every $x \in A_j$ and $z = (z_1, \dots, z_k) \in p_i$, $(x, z) \in E \iff z_j = x \mod p_i$

Parameters of the SUMZERO protocol [Nisan'94]:

Input: *m* bits

Randomness: $O(\log m)$ bits

Message Length: $O(\log m)$ bits

Soundness: 1/2

Nodes in p_i are all $(z_1, \dots, z_k) \in \mathbb{Z}_p^k$ such that $\sum_{j \in [k]} z_j = 0 \mod p_i$

For every $x \in A_j$ and $z = (z_1, \dots, z_k) \in p_i$, $(x, z) \in E \iff z_j = x \mod p_i$

The Framework Revisited

Product Space Problems

Let $f : \{0, 1\}^{m \times k} \to \{0, 1\}$

Problem: PSP(f)

Input: $A_1, \ldots, A_k \subseteq \{0, 1\}^m$ where $|A_i| \le N$

Output: Determine if $\exists a_i \in A_i, \forall i \in [k]$, such that $f(a_1, \ldots, a_k) = 1$
Product Space Problems

Let $f : \{0, 1\}^{m \times k} \to \{0, 1\}$

Problem: PSP(f)

```
Input: A_1, \ldots A_k \subseteq \{0, 1\}^m where |A_i| \le N
```

Output: Determine if $\exists a_i \in A_i, \forall i \in [k]$, such that $f(a_1, \ldots, a_k) = 1$

Product Space Problem (PSP)

Let $m : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be any function and \mathcal{F} be a family of Boolean functions indexed by N and k as follows: $\mathcal{F} := \{f_{N,k} : \{0,1\}^{m(N,k) \times k} \to \{0,1\}\}_{N,k \in \mathbb{N}}$.

Product Space Problems

Let $f : \{0, 1\}^{m \times k} \to \{0, 1\}$

Problem: PSP(f)

```
Input: A_1, \ldots A_k \subseteq \{0, 1\}^m where |A_i| \le N
```

Output: Determine if $\exists a_i \in A_i, \forall i \in [k]$, such that $f(a_1, \ldots, a_k) = 1$

Product Space Problem (PSP)

Let $m : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be any function and \mathcal{F} be a family of Boolean functions indexed by N and k as follows: $\mathcal{F} := \{f_{N,k} : \{0,1\}^{m(N,k) \times k} \to \{0,1\}\}_{N,k \in \mathbb{N}}$.

For each $k \in \mathbb{N}$, the *product space problem* $\mathsf{PSP}(k, \mathcal{F})$ of order N is defined as follows: given k subsets A_1, \ldots, A_k of $\{0, 1\}^{m(N,k)}$ each of cardinality at most N as input, determine if there exists $(a_1, \ldots, a_k) \in A_1 \times \cdots \times A_k$ such that $f_{N,k}(a_1, \ldots, a_k) = 1$.

Product Space Problems

Let $f : \{0, 1\}^{m \times k} \to \{0, 1\}$

Problem: PSP(f)

```
Input: A_1, \ldots, A_k \subseteq \{0, 1\}^m where |A_i| \le N
```

Output: Determine if $\exists a_i \in A_i, \forall i \in [k]$, such that $f(a_1, \ldots, a_k) = 1$

Product Space Problem (PSP)

Let $m : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be any function and \mathcal{F} be a family of Boolean functions indexed by N and k as follows: $\mathcal{F} := \{f_{N,k} : \{0,1\}^{m(N,k) \times k} \to \{0,1\}\}_{N,k \in \mathbb{N}}$.

For each $k \in \mathbb{N}$, the *product space problem* $\mathsf{PSP}(k, \mathcal{F})$ of order N is defined as follows: given k subsets A_1, \ldots, A_k of $\{0, 1\}^{m(N,k)}$ each of cardinality at most N as input, determine if there exists $(a_1, \ldots, a_k) \in A_1 \times \cdots \times A_k$ such that $f_{N,k}(a_1, \ldots, a_k) = 1$.

For the rest of the talk, $m(N, k) = poly(k) \cdot \log N$.

Popular Hypotheses to PSP

 $\text{SETH}\Longrightarrow \mathsf{PSP}(\text{Disj})$

 $SETH \Longrightarrow \mathsf{PSP}(Disj)$

Let $X = X_1 \dot{\cup} \cdots \dot{\cup} X_k$

For every partial assignment σ to X_i , we build $a_{\sigma} \in A_i \subseteq \{0, 1\}^m$ as follows:

$$a_{\sigma}(j) = \begin{cases} 0 & \text{if } \sigma \text{ satisfies } j^{\text{th}} \text{ clause} \\ 1 & \text{otherwise} \end{cases}$$

Let $X = X_1 \dot{\cup} \cdots \dot{\cup} X_k$

For every partial assignment σ to X_i , we build $a_{\sigma} \in A_i \subseteq \{0, 1\}^m$ as follows:

$$a_{\sigma}(j) = \begin{cases} 0 & \text{if } \sigma \text{ satisfies } j^{\text{th}} \text{ clause} \\ 1 & \text{otherwise} \end{cases}$$

Note from above that $ETH \implies \mathsf{PSP}(\mathsf{Disj})$. We will skip $ETH \implies \mathsf{PSP}(\mathsf{MultEq})$

Let $X = X_1 \dot{\cup} \cdots \dot{\cup} X_k$

For every partial assignment σ to X_i , we build $a_{\sigma} \in A_i \subseteq \{0, 1\}^m$ as follows:

$$a_{\sigma}(j) = \begin{cases} 0 & \text{if } \sigma \text{ satisfies } j^{\text{th}} \text{ clause} \\ 1 & \text{otherwise} \end{cases}$$

Note from above that $ETH \implies PSP(Disj)$. We will skip $ETH \implies PSP(Multeq)$

 $W[1] \neq FPT \implies \mathsf{PSP}(MultEq)$

Let $X = X_1 \dot{\cup} \cdots \dot{\cup} X_k$

For every partial assignment σ to X_i , we build $a_{\sigma} \in A_i \subseteq \{0, 1\}^m$ as follows:

$$a_{\sigma}(j) = \begin{cases} 0 & \text{if } \sigma \text{ satisfies } j^{\text{th}} \text{ clause} \\ 1 & \text{otherwise} \end{cases}$$

Note from above that $ETH \implies PSP(Disj)$. We will skip $ETH \implies PSP(Multeq)$

 $W[1] \neq FPT \implies \mathsf{PSP}(MultEq)$

Starting point: ℓ -clique problem on graph G(V, E)

Let $X = X_1 \dot{\cup} \cdots \dot{\cup} X_k$

For every partial assignment σ to X_i , we build $a_{\sigma} \in A_i \subseteq \{0, 1\}^m$ as follows:

 $a_{\sigma}(j) = \begin{cases} 0 & \text{if } \sigma \text{ satisfies } j^{\text{th}} \text{ clause} \\ 1 & \text{otherwise} \end{cases}$

Note from above that $ETH \implies PSP(Disj)$. We will skip $ETH \implies PSP(Multeq)$

 $W[1] \neq FPT \Longrightarrow \mathsf{PSP}(MULTEQ)$

Starting point: ℓ -clique problem on graph G(V, E)

Let
$$k = \binom{\ell}{2}$$
 and set $A_i = E$, i.e., each edge $\in \left(\{0, 1\}^{\log |V|} \times \{\bot, \top\}\right)^{\ell}$

Let $X = X_1 \dot{\cup} \cdots \dot{\cup} X_k$

For every partial assignment σ to X_i , we build $a_{\sigma} \in A_i \subseteq \{0, 1\}^m$ as follows:

 $a_{\sigma}(j) = \begin{cases} 0 & \text{if } \sigma \text{ satisfies } j^{\text{th}} \text{ clause} \\ 1 & \text{otherwise} \end{cases}$

Note from above that $ETH \implies PSP(Disj)$. We will skip $ETH \implies PSP(Multeq)$

 $W[1] \neq FPT \Longrightarrow \mathsf{PSP}(MultEq)$

Starting point: ℓ -clique problem on graph G(V, E)

Let
$$k = \binom{\ell}{2}$$
 and set $A_i = E$, i.e., each edge $\in \left(\{0, 1\}^{\log |V|} \times \{\bot, \top\}\right)^{\ell}$

Check for each vertex that the ℓ incident edges have assigned the same vertex (equality checking)

Each W_i is a Right Super Node Each U_i is a Left Super Node

Each W_i is a Right Super Node Each U_i is a Left Super Node

 $S \subseteq W$ is a labeling of W if $\forall i \in [k], |S \cap W_i| = 1$

Each W_i is a Right Super Node Each U_i is a Left Super Node

 $S \subseteq W$ is a labeling of W if $\forall i \in [k], |S \cap W_i| = 1$

 $S \text{ covers } U_i \text{ if}$ $\exists u \in U_i, \forall v \in S, (u, v) \in E$

Each W_i is a Right Super Node Each U_i is a Left Super Node

 $S \subseteq W$ is a labeling of W if $\forall i \in [k], |S \cap W_i| = 1$

 $S \text{ covers } U_i \text{ if}$ $\exists u \in U_i, \forall v \in S, (u, v) \in E$

MaxCover(Γ , S) = Fraction of U_i 's covered by S

Each W_i is a Right Super Node Each U_i is a Left Super Node

 $S \subseteq W$ is a labeling of W if $\forall i \in [k], |S \cap W_i| = 1$

 $S \text{ covers } U_i \text{ if}$ $\exists u \in U_i, \forall v \in S, (u, v) \in E$

 $MaxCover(\Gamma, S) = Fraction of$ $U_i's covered by S$

 $\mathsf{MaxCover}(\Gamma) = \max_{S} \mathsf{MaxCover}(\Gamma, S)$

Determine if $MaxCover(\Gamma) = 1$ or $MaxCover(\Gamma) \le s$ Each W_i is a Right Super Node Each U_i is a Left Super Node

 $S \subseteq W$ is a labeling of W if $\forall i \in [k], |S \cap W_i| = 1$

 $S \text{ covers } U_i \text{ if}$ $\exists u \in U_i, \forall v \in S, (u, v) \in E$

 $MaxCover(\Gamma, S) = Fraction of$ $U_i's covered by S$

 $\mathsf{MaxCover}(\Gamma) = \max_{S} \mathsf{MaxCover}(\Gamma, S)$

Parameters of SMP protocol Π for $f : \{0, 1\}^{m \times k} \to \{0, 1\}$:

Advice: γ bits

Randomness: R bits

Message Length: *L* bits

Soundness: s

Parameters of SMP protocol Π for $f : \{0, 1\}^{m \times k} \to \{0, 1\}$:

Advice: γ bits

Randomness: R bits

Message Length: *L* bits

Soundness: s

Parameters of SMP protocol Π for $f : \{0, 1\}^{m \times k} \to \{0, 1\}$:

Advice: γ bits

Randomness: R bits

Message Length: *L* bits

Soundness: s

Parameters of SMP protocol Π for $f : \{0, 1\}^{m \times k} \to \{0, 1\}$:

Advice: γ bits

Randomness: R bits

Message Length: *L* bits

Soundness: s

 2^{γ} instances of MaxCover

Parameters of SMP protocol Π for $f : \{0, 1\}^{m \times k} \to \{0, 1\}$:

Advice: γ bits

Randomness: R bits

Message Length: L bits

Soundness: s

 2^{γ} instances of MaxCover

Nodes in U_i are all *k*-tuples of messages that referee accepts on randomness *i* and advice $\mu \in \{0, 1\}^{\gamma}$

Parameters of SMP protocol Π for $f : \{0, 1\}^{m \times k} \to \{0, 1\}$:

Advice: γ bits

Randomness: R bits

Message Length: L bits

Soundness: s

 2^{γ} instances of MaxCover

Nodes in U_i are all *k*-tuples of messages that referee accepts on randomness *i* and advice $\mu \in \{0, 1\}^{\gamma}$

For every $x \in A_j$ and $z = (z_1, ..., z_k) \in U_i$, $(x, z) \in E \iff z_j$ is message of player j on input x and randomness i

Parameters of SMP protocol Π for $f : \{0, 1\}^{m \times k} \to \{0, 1\}$:

Advice: γ bits

Randomness: R bits

Message Length: L bits

Soundness: s

 2^{γ} instances of MaxCover

Nodes in U_i are all *k*-tuples of messages that referee accepts on randomness *i* and advice $\mu \in \{0, 1\}^{\gamma}$

For every $x \in A_j$ and $z = (z_1, ..., z_k) \in U_i$, $(x, z) \in E \iff z_j$ is message of player j on input x and randomness i

Reduction from MaxCover to *k*-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance
$$\Gamma = \left(U = \bigcup_{j=1}^{r} U_j, W = \bigcup_{j=1}^{k} W_i, E\right)$$
 to

a k-DomSet instance G such that

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance $\Gamma = \left(U = \bigcup_{j=1}^{r} U_j, W = \bigcup_{j=1}^{k} W_i, E\right)$ to

- a k-DomSet instance G such that
 - If MaxCover(Γ) = 1, then DomSet(G) = k
 - ◎ If MaxCover(Γ) ≤ ε , then DomSet(G) ≥ $(1/\varepsilon)^{1/k} \cdot k$

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance $\Gamma = \left(U = \bigcup_{j=1}^{r} U_j, W = \bigcup_{j=1}^{k} W_i, E\right)$ to

- a k-DomSet instance G such that
 - If MaxCover(Γ) = 1, then DomSet(G) = k
 - ◎ If MaxCover(Γ) ≤ ε , then DomSet(G) ≥ $(1/\varepsilon)^{1/k} \cdot k$
 - ◎ $|V(G)| = |W| + \sum_{j \in [r]} k^{|U_j|}$

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance $\Gamma = \left(U = \bigcup_{j=1}^{r} U_j, W = \bigcup_{j=1}^{k} W_i, E\right)$ to

- a k-DomSet instance G such that
 - If $MaxCover(\Gamma) = 1$, then DomSet(G) = k
 - ◎ If MaxCover(Γ) ≤ ε , then DomSet(G) ≥ $(1/\varepsilon)^{1/k} \cdot k$
 - ◎ $|V(G)| = |W| + \sum_{j \in [r]} k^{|U_j|}$
 - The reduction runs in time $O\left(|W|\left(\sum_{j \in [r]} k^{|U_j|}\right)\right)$.
Maxcover to Parameterized Dominating Set

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance $\Gamma = \left(U = \bigcup_{j=1}^{r} U_j, W = \bigcup_{j=1}^{k} W_i, E \right)$ to

a k-DomSet instance G such that

- If $MaxCover(\Gamma) = 1$, then DomSet(G) = k
- ◎ If MaxCover(Γ) ≤ ε , then DomSet(G) ≥ $(1/\varepsilon)^{1/k} \cdot k$
- ◎ $|V(G)| = |W| + \sum_{j \in [r]} k^{|U_j|}$

• The reduction runs in time $O\left(|W|\left(\sum_{j\in[r]} k^{|U_j|}\right)\right)$.

We want $1/\varepsilon = \omega(1)$ and $|U_j| = o(m)$

Greedily we want SMP protocols:

Input: *m* bits

Randomness: polylog(m) bits

Message Length: $O_k(1)$ bits Soundness: 1/2

SMP Protocol of Nisan [Nisan'94]:

Input: *m* bits

Message Length: $O(\log m)$ bits

Randomness: $O(\log m)$ bits

Soundness: 1/2

SMP Protocol of Nisan [Nisan'94]: Randomness: $O(\log m)$ bits Input: *m* bits Soundness: 1/2 Message Length: $O(\log m)$ bits SMP Protocol of Viola [Viola'15]: Randomness: O(m) bits Input: *m* bits Message Length: $O_k(1)$ bits Soundness: 1/2

SMP Protocol of Nisan [Nisan'94]: Randomness: $O(\log m)$ bits Input: *m* bits Message Length: $O(\log m)$ bits Soundness: 1/2SMP Protocol of Viola [Viola'15]: Input: *m* bits Randomness: O(m) bits Message Length: $O_k(1)$ bits Soundness: 1/2 New SMP Protocol: Randomness: $O_k(\log m)$ bits Input: *m* bits Message Length: $O_k(1)$ bits Soundness: 1/2

Idea: Use any binary code of constant rate and distance δ

Idea: Use any binary code of constant rate and distance δ

SMP Protocol Parameters:

Input: *m* bits

Message Length: O(1) bits

Randomness: $O(\log m)$ bits Soundness: $1 - \delta$

A straightforward extension of Rubinstein's two-party protocol [R'18,ARW'17,AW'09]

A straightforward extension of Rubinstein's two-party protocol [R'18,ARW'17,AW'09]

Good Pointwise Product (GPP) Codes

- ◎ *C* is systematic and can be encoded efficiently.
- Itet C^k be the set of all k-pointwise product of codewords of C. Then, there exists a linear good code C̃ such that C^k ⊆ C̃, i.e., C̃ has relative distance and rate greater than δ.

A straightforward extension of Rubinstein's two-party protocol [R'18,ARW'17,AW'09]

Good Pointwise Product (GPP) Codes

- ◎ *C* is systematic and can be encoded efficiently.
- ◎ Let C^k be the set of all *k*-pointwise product of codewords of *C*. Then, there exists a linear good code \tilde{C} such that $C^k \subseteq \tilde{C}$, i.e., \tilde{C} has relative distance and rate greater than δ .
- Player *i* divides his input x_i into *T* parts $x_i^1, \ldots x_i^T$

A straightforward extension of Rubinstein's two-party protocol [R'18,ARW'17,AW'09]

Good Pointwise Product (GPP) Codes

- ◎ *C* is systematic and can be encoded efficiently.
- ◎ Let C^k be the set of all *k*-pointwise product of codewords of *C*. Then, there exists a linear good code \tilde{C} such that $C^k \subseteq \tilde{C}$, i.e., \tilde{C} has relative distance and rate greater than δ .
- Player *i* divides his input x_i into *T* parts $x_i^1, \ldots x_i^T$
- ◎ The advice μ of the referee is $\sum_{j \in [T]\ell \in [k]} \prod_{\ell \in [k]} C(x_{\ell}^{j})$ a codeword of \widetilde{C} !

A straightforward extension of Rubinstein's two-party protocol [R'18,ARW'17,AW'09]

Good Pointwise Product (GPP) Codes

- ◎ *C* is systematic and can be encoded efficiently.
- ◎ Let C^k be the set of all *k*-pointwise product of codewords of *C*. Then, there exists a linear good code \tilde{C} such that $C^k \subseteq \tilde{C}$, i.e., \tilde{C} has relative distance and rate greater than δ .
- Player *i* divides his input x_i into *T* parts $x_i^1, \ldots x_i^T$
- ◎ The advice μ of the referee is $\sum_{j \in [T]\ell \in [k]} \prod_{\ell \in [k]} C(x_{\ell}^{j})$ a codeword of \widetilde{C} !
- \odot Referee checks that μ is zero in the systematic part and on a random coordinate

A straightforward extension of Rubinstein's two-party protocol [R'18,ARW'17,AW'09]

Good Pointwise Product (GPP) Codes

Let *q* be a prime power and $k \in \mathbb{N}$. A code *C* over \mathbb{F}_q is said to be a *q*-GHP code if there exists a constant $\delta(k) > 0$ such that the following holds.

- ◎ *C* is systematic and can be encoded efficiently.
- ◎ Let C^k be the set of all *k*-pointwise product of codewords of *C*. Then, there exists a linear good code \tilde{C} such that $C^k \subseteq \tilde{C}$, i.e., \tilde{C} has relative distance and rate greater than δ .
- Player *i* divides his input x_i into *T* parts $x_i^1, \ldots x_i^T$
- The advice μ of the referee is $\sum_{j \in [T]\ell \in [k]} \prod_{\ell \in [k]} C(x_{\ell}^{j})$ a codeword of \widetilde{C} !
- Referee checks that μ is zero in the systematic part and on a random coordinate

Advice: $O_k(m/T \log q)$ bitsRandomness: $O_k(\log m)$ bitsMessage Length: $T \log q$ bitsSoundness: $1 - \delta$

SMP Protocol for *k*-disjointness (continued)

SMP Protocol Parameters:

Advice: $O_k(m/T \log q)$ bits

Message Length: $T \log q$ bits

Randomness: $O_k(\log m)$ bits Soundness: $1 - \delta$

SMP Protocol for *k*-disjointness (continued)

SMP Protocol Parameters:

Advice: $O_k(m/T \log q)$ bits

Message Length: $T \log q$ bits

Randomness: $O_k(\log m)$ bits

Soundness: $1 - \delta$

Reed Solomon Codes

Let $\ell \in \mathbb{N}$ and *q* be a prime number in $[4\ell, 8\ell)$. Then, there exists a *q*-GPP code of message length ℓ .

SMP Protocol for *k*-disjointness (continued)

SMP Protocol Parameters:

Advice: $O_k(m/T \log q)$ bits

Message Length: $T \log q$ bits

Randomness: $O_k(\log m)$ bits

Soundness: $1 - \delta$

Reed Solomon Codes

Let $\ell \in \mathbb{N}$ and *q* be a prime number in $[4\ell, 8\ell)$. Then, there exists a *q*-GPP code of message length ℓ .

Algebraic Geometric Codes [GS'96, SAKSD'01]

There exists a constant $c \in \mathbb{N}$ such that for any prime number q greater than c there is a q^2 -GPP code for every message length $\ell \in \mathbb{N}$.

- \odot Any T(k) approximation is W[1]-hard
- No T(k) approximation algorithm in $N^{o(k)}$ time, assuming ETH
- No T(k) approximation algorithm in $N^{k-\varepsilon}$ time, assuming SETH
- No T(k) approximation algorithm in $N^{\lceil k/2 \rceil \varepsilon}$ time, assuming *k*-SUM Hypothesis

Summary of the Framework

 Parameterized Dominating Set is W[2]-complete. Can we show every T(k) approximation is also W[2]-hard?

- Parameterized Dominating Set is W[2]-complete. Can we show every T(k) approximation is also W[2]-hard?
- Parameterized Clique is W[1]-complete. Can we show every T(k) approximation is also W[1]-hard?

- Parameterized Dominating Set is W[2]-complete. Can we show every T(k) approximation is also W[2]-hard?
- Parameterized Clique is W[1]-complete. Can we show every T(k) approximation is also W[1]-hard? Can we show 1.01 approximation is W[1]-hard?

 Are there natural problems in PSP which do not have efficient MA protocols?

- Are there natural problems in PSP which do not have efficient MA protocols?
- Conceptually/Philosophically can we say something about the various time hypotheses?

THANK YOU!

