A Parameterized Framework for Hardness of Approximation

Karthik C. S.
(Weizmann Institute of Science)

Joint work with

Bundit Laekhanukit
(Shanghai University of
Finance and Economics)

Pasin Manurangsi (UC Berkeley)

Dominating Set Problem

$G(V, E)$

Dominating Set Problem

$S \subseteq V$ is a Dominating Set of G if $\forall u \in V$:
(0) $u \in S$, or
© $\exists v \in S$ such that $(u, v) \in E$
$G(V, E)$

Dominating Set Problem

$S \subseteq V$ is a Dominating Set of G if $\forall u \in V$:
(0) $u \in S$, or
© $\exists v \in S$ such that $(u, v) \in E$
$G(V, E)$

Dominating Set Problem

$G(V, E)$
$S \subseteq V$ is a Dominating Set of G if $\forall u \in V$:
(0) $u \in S$, or
© $\exists v \in S$ such that $(u, v) \in E$

Computational Problem: Given G and $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:
© S is a Dominating Set of G
($|S| \leq k$

Dominating Set Problem

$G(V, E)$
$S \subseteq V$ is a Dominating Set of G if $\forall u \in V$:
() $u \in S$, or
© $\exists v \in S$ such that $(u, v) \in E$

Computational Problem: Given G and $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:
© S is a Dominating Set of G
($|S| \leq k$
\longrightarrow NP-Complete [Karp' 72]

Dominating Set Problem

$G(V, E)$
$\longrightarrow \ln |V|$ approximation is in P [Slavík'96]
$S \subseteq V$ is a Dominating Set of G if $\forall u \in V$:
(0) $u \in S$, or
© $\exists v \in S$ such that $(u, v) \in E$

Computational Problem: Given G and $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:
© S is a Dominating Set of G
© $|S| \leq k$
\longrightarrow NP-Complete [Karp' 72]

Dominating Set Problem

$G(V, E)$
$\longrightarrow \ln |V|$ approximation is in P [Slavík'96]
$\longrightarrow(1-\varepsilon) \ln |V|$ approximation is NP-Complete [DS'14]
$S \subseteq V$ is a Dominating Set of G if $\forall u \in V$:
© $u \in S$, or
© $\exists v \in S$ such that $(u, v) \in E$

Computational Problem: Given G and $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:
© S is a Dominating Set of G
() $|S| \leq k$
\longrightarrow NP-Complete [Karp' 72]

Parameterized Dominating Set Problem

Computational Problem: Given G and parameter $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:
© S is a Dominating Set of G
© $|S| \leq k$

Computational Problem: Given G and parameter $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:
$\odot S$ is a Dominating Set of G
© $|S| \leq k$
Fixed Parameter Tractability (FPT): The problem can be decided in $F(k) \cdot$ poly $(|V|)$ time, for some computable function F.

Computational Problem: Given G and parameter $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:

๑ S is a Dominating Set of G
© $|S| \leq k$
Fixed Parameter Tractability (FPT): The problem can be decided in $F(k) \cdot$ poly $(|V|)$ time, for some computable function F.
k-Dominating Set
k-Clique
k-Vertex Cover

Computational Problem: Given G and parameter $k \in \mathbb{N}$, determine if $\exists S \subseteq V$:
$\odot S$ is a Dominating Set of G
© $|S| \leq k$
Fixed Parameter Tractability (FPT): The problem can be decided in $F(k) \cdot$ poly $(|V|)$ time, for some computable function F.

$$
k \text {-Dominating Set }
$$

$\mathrm{W}[2] \longleftarrow$
k-Clique
$\mathrm{W}[1] \longleftarrow$
k-Vertex Cover
FPT

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k :
© W [2] complete [DF'95]

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k :
© W [2] complete [DF'95]
© Trivial Algorithm: $O\left(N^{k+1}\right)$ time

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k :
© W[2] complete [DF'95]
© Trivial Algorithm: $O\left(N^{k+1}\right)$ time
© State of the Art: $N^{k+o(1)}$ time [EG'04, $\mathrm{PW}^{\prime} 10$]

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k :
© W[2] complete [DF'95]
© Trivial Algorithm: $O\left(N^{k+1}\right)$ time
© State of the Art: $N^{k+o(1)}$ time [$E G^{\prime} 04, \mathrm{PW}^{\prime} 10$]
© No $N^{o(k)}$ time algorithm assuming ETH [CHKX'o6]

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k :
© W[2] complete [DF' 95]
© Trivial Algorithm: $O\left(N^{k+1}\right)$ time
© State of the Art: $N^{k+o(1)}$ time [EG'o4, $\mathrm{PW}^{\prime} 10$]
© No $N^{o(k)}$ time algorithm assuming ETH [CHKX'o6]
There exists $\delta>0$ such that no algorithm can solve 3-CNF-SAT in $O\left(2^{\delta n}\right)$ time where n is the number of variables.

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k :
© W[2] complete [DF'95]
© Trivial Algorithm: $O\left(N^{k+1}\right)$ time
© State of the Art: $N^{k+o(1)}$ time [EG'o4, PW'10]
© No $N^{o(k)}$ time algorithm assuming ETH [CHKX'o6]
© No $O\left(N^{k-\varepsilon}\right)$ algorithm assuming SETH [PW'1o]

Parameterized Complexity of Dominating Set Problem

Given graph on N vertices and parameter k :
© W[2] complete [DF'95]
© Trivial Algorithm: $O\left(N^{k+1}\right)$ time
© State of the Art: $N^{k+o(1)}$ time [EG'o4, PW'10]
© No $\mathrm{N}^{o(k)}$ time algorithm assuming ETH [CHKX'o6]
© No $O\left(N^{k-\varepsilon}\right)$ algorithm assuming SETH [PW'1o]
For every $\varepsilon>0$, there exists $\ell(\varepsilon) \in \mathbb{N}$ such that no algorithm can solve ℓ-SAT in $O\left(2^{(1-\varepsilon) n}\right)$ time where n is the number of variables.

FPT Approximability: The problem has a $T(k)$ approximation algorithm running in time $F(k) \cdot \operatorname{poly}(N)$ time.

FPT Approximability: The problem has a $T(k)$ approximation algorithm running in time $F(k) \cdot \operatorname{poly}(N)$ time.

Approximate Parameterized Dominating Set Problem: Given a graph G and parameter k distinguish between:
© \exists a dominating set of size at most k
© There is no dominating set of size $T(k) \cdot k$

FPT Approximability: The problem has a $T(k)$ approximation algorithm running in time $F(k) \cdot \operatorname{poly}(N)$ time.

Approximate Parameterized Dominating Set Problem: Given a graph G and parameter k distinguish between:
© \exists a dominating set of size at most k
© There is no dominating set of size $T(k) \cdot k$

Is there some computable function T for which the above problem is in FPT?

Previous Works

Two decades later:

Previous Works

Two decades later:
© Any constant approximation is W[1]-hard [CL'16]

Previous Works

Two decades later:
© Any constant approximation is W[1]-hard [CL'16]
© No $(\log k)^{1 / 4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]

Previous Works

Two decades later:
© Any constant approximation is W[1]-hard [CL'16]
© No $(\log k)^{1 / 4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
© No $T(k)$ approximation algorithm in $N^{o(k)}$ time, assuming Gap-ETH [CCKLMNT'17]

Previous Works

Two decades later:
© Any constant approximation is W[1]-hard [CL'16]
© No $(\log k)^{1 / 4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
© No $T(k)$ approximation algorithm in $N^{o(k)}$ time, assuming Gap-ETH [CCKLMNT'17]

There exists a constant $\delta>0$ such that any algorithm that, on input a 3-SAT formula φ on n variables and $O(n)$ clauses, can distinguish between $\operatorname{SAT}(\varphi)=1$ and $\operatorname{SAT}(\varphi)<0.9$, must run in time at least $2^{\delta n}$.

Previous Works

Two decades later:
© Any constant approximation is W[1]-hard [CL'16]
© No $(\log k)^{1 / 4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
© No $T(k)$ approximation algorithm in $N^{o(k)}$ time, assuming Gap-ETH [CCKLMNT'17]
\star Can we show every $T(k)$ approximation is W[1]-hard?

Previous Works

Two decades later:
© Any constant approximation is W[1]-hard [CL'16]
© No $(\log k)^{1 / 4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
© No $T(k)$ approximation algorithm in $N^{o(k)}$ time, assuming Gap-ETH [CCKLMNT'17]
\star Can we show every $T(k)$ approximation is W[1]-hard?
\star Can we show no $T(k)$ approximation algorithm exists running in time $N^{o(k)}$, assuming ETH?

Previous Works

Two decades later:
© Any constant approximation is W[1]-hard [CL'16]
© No $(\log k)^{1 / 4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
© No $T(k)$ approximation algorithm in $N^{o(k)}$ time, assuming Gap-ETH [CCKLMNT'17]
\star Can we show every $T(k)$ approximation is W[1]-hard?
\star Can we show no $T(k)$ approximation algorithm exists running in time $N^{o(k)}$, assuming ETH?
\star Can we show no $T(k)$ approximation algorithm exists running in time $N^{k-\varepsilon}$, assuming SETH?

Previous Works

Two decades later:
© Any constant approximation is
[CL'16]
© No $(\log k)^{1 / 4}$ approxim acine in $N^{o(\sqrt{k})}$ time, assuming ETH
© No T (k) To Palgorithm in $N^{o(k)}$ time, assuming Gap-E _ CMNT'17] 17
\star Can we show every $T(k)$ approximation is W[1]-hard?
\star Can we show no $T(k)$ approximation algorithm exists running in time $N^{o(k)}$, assuming ETH?
夫 Can we show no $T(k)$ approximation algorithm exists running in time $N^{k-\varepsilon}$, assuming SETH?

Previous Works

Two decades later:
© Any constant approximation is W[1]-hard [CL'16]
© No $(\log k)^{1 / 4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
© No $T(k)$ approximation algorithm in $N^{o(k)}$ time, assuming Gap-ETH [CCKLMNT'17]
\star Can we show every $T(k)$ approximation is W[1]-hard?
\star Can we show no $T(k)$ approximation algorithm exists running in time $N^{o(k)}$, assuming ETH?
\star Can we show no $T(k)$ approximation algorithm exists running in time $N^{k-\varepsilon}$, assuming SETH?

Previous Works

Two decades later:
© Any constant approximation is W[1]-hard [CL'16]
© No $(\log k)^{1 / 4}$ approximation algorithm in $N^{o(\sqrt{k})}$ time, assuming ETH [CL'16]
© No $T(k)$ approximation algorithm in $N^{o(k)}$ time, assuming Gap-ETH [CCKLMNT'17]
\star Can we show every $T(k)$ approximation is W[1]-hard?
\star Can we show no $T(k)$ approximation algorithm exists running in time $M^{o(k)}$, ssuning ETH?
\star Can we show tro (k)upproximation algorithm exists running in time $N^{\prime /}$, assuming SETH?

Our Results

© Any $T(k)$ approximation is W[1]-hard
© No $T(k)$ approximation algorithm in $N^{o(k)}$ time, assuming ETH
© No $T(k)$ approximation algorithm in $N^{k-\varepsilon}$ time, assuming SETH
© No $T(k)$ approximation algorithm in $N^{\lceil k / 2\rceil-\varepsilon}$ time, assuming k-SUM Hypothesis

Our Results

© Any $T(k)$ approximation is W[1]-hard
© No $T(k)$ approximation algorithm in $N^{o(k)}$ time, assuming ETH
© No $T(k)$ approximation algorithm in $N^{k-\varepsilon}$ time, assuming SETH
() No $T(k)$ approximation algorithm in $N^{\lceil k / 2\rceil-\varepsilon}$ time, assuming k-SUM Hypothesis
k-SUM Problem: Given $A_{1}, \ldots, A_{k} \subseteq\left[-N^{2 k}, N^{2 k}\right]$ where $N=\sum_{i \in[k]}\left|A_{i}\right|$, determine whether there exist $x_{i} \in A_{i}, \forall i \in[k]$ such that $\sum_{i \in[k]} x_{i}=0$.

Our Results

© Any $T(k)$ approximation is W[1]-hard
© No $T(k)$ approximation algorithm in $N^{o(k)}$ time, assuming ETH
© No $T(k)$ approximation algorithm in $N^{k-\varepsilon}$ time, assuming SETH
() No $T(k)$ approximation algorithm in $N^{\lceil k / 2\rceil-\varepsilon}$ time, assuming k-SUM Hypothesis
k-SUM Problem: Given $A_{1}, \ldots, A_{k} \subseteq\left[-N^{2 k}, N^{2 k}\right]$ where $N=\sum_{i \in[k]}\left|A_{i}\right|$, determine whether there exist $x_{i} \in A_{i}, \forall i \in[k]$ such that $\sum_{i \in[k]} x_{i}=0$. k-SUM Hypothesis: For every integer $k \geq 3$ and every $\varepsilon>0$, no $O\left(N^{\lceil k / 2\rceil-\varepsilon}\right)$ time algorithm can solve the k-SUM problem.

Our Results

© Any $T(k)$ approximation is W[1]-hard
© No $T(k)$ approximation algorithm in $N^{o(k)}$ time, assuming ETH
© No $T(k)$ approximation algorithm in $N^{k-\varepsilon}$ time, assuming SETH
© No $T(k)$ approximation algorithm in $N^{\lceil k / 2\rceil-\varepsilon}$ time, assuming k-SUM Hypothesis

All results obtained in an Unified Proof Framework!

The Framework

Gap Translation

The Framework

Generalization of Distributed PCP Framework [ARW'17]

The Framework

Generalization of Distributed PCP Framework [ARW'17]

Simultaneous Message Passing (SMP) Model

Simultaneous Message Passing (SMP) Model

Simultaneous Message Passing (SMP) Model

Simultaneous Message Passing (SMP) Model

Simultaneous Message Passing (SMP) Model

Referee

$$
f:\{0,1\}^{m \times k} \rightarrow\{0,1\}
$$

Simultaneous Message Passing (SMP) Model

Simultaneous Message Passing (SMP) Model

Simultaneous Message Passing (SMP) Model

Randomized Protocols:
Completeness: If $f\left(x_{1}, \ldots, x_{k}\right)=1$ then the referee always accepts
Soundness: If $f\left(x_{1}, \ldots, x_{k}\right)=0$ then the referee accepts with probability $\leq s$

Simultaneous Message Passing (SMP) Model

Simultaneous Message Passing (SMP) Model

Simultaneous Message Passing (SMP) Model

MA Protocols:
Completeness: If $f\left(x_{1}, \ldots, x_{k}\right)=1$ then there exists μ for which referee always accepts
Soundness: If $f\left(x_{1}, \ldots, x_{k}\right)=0$ then for all μ, the referee accepts with probability $\leq s$

k-sum to Maxcover: Proof Sketch

k-SUM problem: Given $A_{1}, \ldots, A_{k} \subseteq\left[-N^{2 k}, N^{2 k}\right]$ where $N=\sum_{i \in[k]}\left|A_{i}\right|$, determine whether there exist $x_{i} \in A_{i}, \forall i \in[k]$ such that $\sum_{i \in[k]} x_{i}=0$.

k-sum to Maxcover: Proof Sketch

k-SUM problem: Given $A_{1}, \ldots, A_{k} \subseteq\left[-N^{2 k}, N^{2 k}\right]$ where $N=\sum_{i \in[k]}\left|A_{i}\right|$, determine whether there exist $x_{i} \in A_{i}, \forall i \in[k]$ such that $\sum_{i \in[k]} x_{i}=0$.

SumZero problem: Player i is given $x_{i} \in\left[-N^{2 k}, N^{2 k}\right]$ as input. Referee wants to determine whether $\sum_{i \in[k]} x_{i}=0$.

k-sum to Maxcover: Proof Sketch

k-SUM problem: Given $A_{1}, \ldots, A_{k} \subseteq\left[-N^{2 k}, N^{2 k}\right]$ where $N=\sum_{i \in[k]}\left|A_{i}\right|$, determine whether there exist $x_{i} \in A_{i}, \forall i \in[k]$ such that $\sum_{i \in[k]} x_{i}=0$.

SumZero problem: Player i is given $x_{i} \in\left[-N^{2 k}, N^{2 k}\right]$ as input. Referee wants to determine whether $\sum_{i \in[k]} x_{i}=0$.

Consider the following randomized protocol for SumZero [Nisan'94]:

1. The players and referee jointly draw a prime p^{*} in $\left\{p_{1}, \ldots, p_{r}\right\}$ ($\log r$ random bits)
2. Player i sends $x_{i} \bmod p^{*}$ to the referee $\left(\log p^{*}\right.$ bits)
3. The referee accepts if the sum of all the numbers he receives is zero

k-sum to Maxcover: Proof Sketch

k-SUM problem: Given $A_{1}, \ldots, A_{k} \subseteq\left[-N^{2 k}, N^{2 k}\right]$ where $N=\sum_{i \in[k]}\left|A_{i}\right|$, determine whether there exist $x_{i} \in A_{i}, \forall i \in[k]$ such that $\sum_{i \in[k]} x_{i}=0$.

SumZero problem: Player i is given $x_{i} \in\left[-N^{2 k}, N^{2 k}\right]$ as input. Referee wants to determine whether $\sum_{i \in[k]} x_{i}=0$.

Consider the following randomized protocol for SumZero [Nisan'94]:

1. The players and referee jointly draw a prime p^{*} in $\left\{p_{1}, \ldots, p_{r}\right\}$ ($\log r$ random bits)
2. Player i sends $x_{i} \bmod p^{*}$ to the referee $\left(\log p^{*}\right.$ bits)
3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If $\sum_{i \in[k]} x_{i}=0$ then $\sum_{i \in[k]} x_{i} \bmod p^{*}=0$

k-sum to Maxcover: Proof Sketch

k-SUM problem: Given $A_{1}, \ldots, A_{k} \subseteq\left[-N^{2 k}, N^{2 k}\right]$ where $N=\sum_{i \in[k]}\left|A_{i}\right|$, determine whether there exist $x_{i} \in A_{i}, \forall i \in[k]$ such that $\sum_{i \in[k]} x_{i}=0$.

SumZero problem: Player i is given $x_{i} \in\left[-N^{2 k}, N^{2 k}\right]$ as input. Referee wants to determine whether $\sum_{i \in[k]} x_{i}=0$.

Consider the following randomized protocol for SumZero [Nisan'94]:

1. The players and referee jointly draw a prime p^{*} in $\left\{p_{1}, \ldots, p_{r}\right\}$ ($\log r$ random bits)
2. Player i sends $x_{i} \bmod p^{*}$ to the referee $\left(\log p^{*}\right.$ bits)
3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If $\sum_{i \in[k]} x_{i}=0$ then $\sum_{i \in[k]} x_{i} \bmod p^{*}=0$
Soundness: If $\sum_{i \in[k]} x_{i} \neq 0$ then the number of prime factors of $\sum_{i \in[k]} x_{i}$ is at most $r^{*}=2 k \log N+\log k$.

k-sum to Maxcover: Proof Sketch

k-SUM problem: Given $A_{1}, \ldots, A_{k} \subseteq\left[-N^{2 k}, N^{2 k}\right]$ where $N=\sum_{i \in[k]}\left|A_{i}\right|$, determine whether there exist $x_{i} \in A_{i}, \forall i \in[k]$ such that $\sum_{i \in[k]} x_{i}=0$.

SumZero problem: Player i is given $x_{i} \in\left[-N^{2 k}, N^{2 k}\right]$ as input. Referee wants to determine whether $\sum_{i \in[k]} x_{i}=0$.

Consider the following randomized protocol for SumZero [Nisan'94]:

1. The players and referee jointly draw a prime p^{*} in $\left\{p_{1}, \ldots, p_{r}\right\}$ ($\log r$ random bits)
2. Player i sends $x_{i} \bmod p^{*}$ to the referee $\left(\log p^{*}\right.$ bits)
3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If $\sum_{i \in[k]} x_{i}=0$ then $\sum_{i \in[k]} x_{i} \bmod p^{*}=0$
Soundness: If $\sum_{i \in[k]} x_{i} \neq 0$ then the number of prime factors of $\sum_{i \in[k]} x_{i}$ is at most $r^{*}=2 k \log N+\log k$. Therefore if $r \geq 2 r^{*}$ then the referee rejects with probability $\geq 1 / 2$

k-sum to Maxcover: Proof Sketch

k-SUM problem: Given $A_{1}, \ldots, A_{k} \subseteq\left[-N^{2 k}, N^{2 k}\right]$ where $N=\sum_{i \in[k]}\left|A_{i}\right|$, determine whether there exist $x_{i} \in A_{i}, \forall i \in[k]$ such that $\sum_{i \in[k]} x_{i}=0$.

SumZero problem: Player i is given $x_{i} \in\left[-N^{2 k}, N^{2 k}\right]$ as input. Referee wants to determine whether $\sum_{i \in[k]} x_{i}=0$.

Consider the following randomized protocol for SumZero [Nisan'94]:

1. The players and referee jointly draw a prime p^{*} in $\left\{p_{1}, \ldots, p_{r}\right\}$ ($\log r$ random bits)
2. Player i sends $x_{i} \bmod p^{*}$ to the referee $\left(\log p^{*}\right.$ bits)
3. The referee accepts if the sum of all the numbers he receives is zero

Completeness: If $\sum_{i \in[k]} x_{i}=0$ then $\sum_{i \in[k]} x_{i} \bmod p^{*}=0$
Soundness: If $\sum_{i \in[k]} x_{i} \neq 0$ then the number of prime factors of $\sum_{i \in[k]} x_{i}$ is at most $r^{*}=2 k \log N+\log k$. Therefore if $r \geq 2 r^{*}$ then the referee rejects with probability $\geq 1 / 2$

Input: m bits
Message Length: $O(\log m)$ bits

Randomness: $O(\log m)$ bits
Soundness: $1 / 2$

k-sum to Maxcover: Proof Sketch (Continued)

Parameters of the SumZero protocol [Nisan'94]:

Input: m bits
Message Length: $O(\log m)$ bits

Randomness: $O(\log m)$ bits
Soundness: $1 / 2$

k-sum to Maxcover: Proof Sketch (Continued)

Parameters of the SumZero protocol [Nisan'94]:

Input: m bits
Message Length: $O(\log m)$ bits

Randomness: $O(\log m)$ bits
Soundness: 1/2

k-sum to Maxcover: Proof Sketch (Continued)

Parameters of the SumZero protocol [Nisan'94]:

Input: m bits
Message Length: $O(\log m)$ bits

Randomness: $O(\log m)$ bits
Soundness: 1/2

Nodes in p_{i} are all $\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{Z}_{p}^{k}$ such that $\sum_{j \in[k]} z_{j}=0 \bmod p_{i}$

k-sum to Maxcover: Proof Sketch (Continued)

Parameters of the SumZero protocol [Nisan'94]:

Input: m bits
Message Length: $O(\log m)$ bits

Randomness: $O(\log m)$ bits
Soundness: $1 / 2$

Nodes in p_{i} are all $\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{Z}_{p}^{k}$ such that $\sum_{j \in[k]} z_{j}=0 \bmod p_{i}$

For every $x \in A_{j}$ and $z=\left(z_{1}, \ldots, z_{k}\right) \in p_{i}$,

$$
(x, z) \in E \Longleftrightarrow z_{j}=x \bmod p_{i}
$$

k-sum to Maxcover: Proof Sketch (Continued)

Parameters of the SumZero protocol [Nisan'94]:

Input: m bits
Message Length: $O(\log m)$ bits

Randomness: $O(\log m)$ bits
Soundness: $1 / 2$

$$
\Gamma(U, W, E)
$$

Nodes in p_{i} are all $\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{Z}_{p}^{k}$ such that $\sum_{j \in[k]} z_{j}=0 \bmod p_{i}$

For every $x \in A_{j}$ and $z=\left(z_{1}, \ldots, z_{k}\right) \in p_{i}$,

$$
(x, z) \in E \Longleftrightarrow z_{j}=x \bmod p_{i}
$$

A labeling $\left(x_{1}, \ldots, x_{k}\right)$ covers p_{i}

The referee accepts on random prime p_{i}

k-sum to Maxcover: Proof Sketch (Continued)

Parameters of the SumZero protocol [Nisan'94]:

Input: m bits
Message Length: $O(\log m)$ bits

Randomness: $O(\log m)$ bits
Soundness: $1 / 2$

Nodes in p_{i} are all $\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{Z}_{p}^{k}$ such that $\sum_{j \in[k]} z_{j}=0 \bmod p_{i}$

For every $x \in A_{j}$ and $z=\left(z_{1}, \ldots, z_{k}\right) \in p_{i}$,

$$
(x, z) \in E \Longleftrightarrow z_{j}=x \bmod p_{i}
$$

A labeling $\left(x_{1}, \ldots, x_{k}\right)$ covers p_{i}

The referee accepts on random prime p_{i}

Soundness of SumZero protocol

Soundness of MaxCover

The Framework Revisited

Product Space Problems

Let $f:\{0,1\}^{m \times k} \rightarrow\{0,1\}$
Problem: $\operatorname{PSP}(f)$
Input: $A_{1}, \ldots A_{k} \subseteq\{0,1\}^{m}$ where $\left|A_{i}\right| \leq N$
Output: Determine if $\exists a_{i} \in A_{i}, \forall i \in[k]$, such that $f\left(a_{1}, \ldots, a_{k}\right)=1$

Product Space Problems

Let $f:\{0,1\}^{m \times k} \rightarrow\{0,1\}$
Problem: $\operatorname{PSP}(f)$
Input: $A_{1}, \ldots A_{k} \subseteq\{0,1\}^{m}$ where $\left|A_{i}\right| \leq N$
Output: Determine if $\exists a_{i} \in A_{i}, \forall i \in[k]$, such that $f\left(a_{1}, \ldots, a_{k}\right)=1$

Product Space Problem (PSP)

Let $m: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be any function and \mathscr{F} be a family of Boolean functions indexed by N and k as follows: $\mathscr{F}:=\left\{f_{N, k}:\{0,1\}^{m(N, k) \times k} \rightarrow\{0,1\}\right\}_{N, k \in \mathbb{N}}$.

Product Space Problems

Let $f:\{0,1\}^{m \times k} \rightarrow\{0,1\}$
Problem: $\operatorname{PSP}(f)$
Input: $A_{1}, \ldots A_{k} \subseteq\{0,1\}^{m}$ where $\left|A_{i}\right| \leq N$
Output: Determine if $\exists a_{i} \in A_{i}, \forall i \in[k]$, such that $f\left(a_{1}, \ldots, a_{k}\right)=1$

Product Space Problem (PSP)

Let $m: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be any function and \mathscr{F} be a family of Boolean functions indexed by N and k as follows: $\mathscr{F}:=\left\{f_{N, k}:\{0,1\}^{m(N, k) \times k} \rightarrow\{0,1\}\right\}_{N, k \in \mathbb{N}}$.

For each $k \in \mathbb{N}$, the product space problem $\operatorname{PSP}(k, \mathscr{F})$ of order N is defined as follows: given k subsets A_{1}, \ldots, A_{k} of $\{0,1\}^{m(N, k)}$ each of cardinality at most N as input, determine if there exists $\left(a_{1}, \ldots, a_{k}\right) \in A_{1} \times \cdots \times A_{k}$ such that $f_{N, k}\left(a_{1}, \ldots, a_{k}\right)=1$.

Product Space Problems

Let $f:\{0,1\}^{m \times k} \rightarrow\{0,1\}$
Problem: $\operatorname{PSP}(f)$
Input: $A_{1}, \ldots A_{k} \subseteq\{0,1\}^{m}$ where $\left|A_{i}\right| \leq N$
Output: Determine if $\exists a_{i} \in A_{i}, \forall i \in[k]$, such that $f\left(a_{1}, \ldots, a_{k}\right)=1$

Product Space Problem (PSP)

Let $m: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be any function and \mathscr{F} be a family of Boolean functions indexed by N and k as follows: $\mathscr{F}:=\left\{f_{N, k}:\{0,1\}^{m(N, k) \times k} \rightarrow\{0,1\}\right\}_{N, k \in \mathbb{N}}$.
For each $k \in \mathbb{N}$, the product space problem $\operatorname{PSP}(k, \mathscr{F})$ of order N is defined as follows: given k subsets A_{1}, \ldots, A_{k} of $\{0,1\}^{m(N, k)}$ each of cardinality at most N as input, determine if there exists $\left(a_{1}, \ldots, a_{k}\right) \in A_{1} \times \cdots \times A_{k}$ such that $f_{N, k}\left(a_{1}, \ldots, a_{k}\right)=1$.

For the rest of the talk, $m(N, k)=\operatorname{poly}(k) \cdot \log N$.

The Framework Revisited

The Framework Revisited

Popular Hypotheses to PSP

SETH $\Longrightarrow P S P\left(\right.$ Disj $\left.^{\prime}\right)$

Popular Hypotheses to PSP

SETH $\Longrightarrow P S P\left(\right.$ DisJ $\left.^{\prime}\right)$
Let $X=X_{1} \dot{\cup} \cdots \dot{U} X_{k}$
For every partial assignment σ to X_{i}, we build $a_{\sigma} \in A_{i} \subseteq\{0,1\}^{m}$ as follows:

$$
a_{\sigma}(j)= \begin{cases}0 & \text { if } \sigma \text { satisfies } j^{\text {th }} \text { clause } \\ 1 & \text { otherwise }\end{cases}
$$

Popular Hypotheses to PSP

SETH $\Longrightarrow P S P\left(\right.$ DisJ $\left.^{\prime}\right)$
Let $X=X_{1} \dot{\cup} \cdots \dot{U} X_{k}$
For every partial assignment σ to X_{i}, we build $a_{\sigma} \in A_{i} \subseteq\{0,1\}^{m}$ as follows:

$$
a_{\sigma}(j)= \begin{cases}0 & \text { if } \sigma \text { satisfies } j^{\text {th }} \text { clause } \\ 1 & \text { otherwise }\end{cases}
$$

Note from above that $\mathrm{ETH} \Longrightarrow \mathrm{PSP}($ Disj). We will skip ETH $\Longrightarrow P S P($ MultEQ $)$

Popular Hypotheses to PSP

SETH $\Longrightarrow P S P\left(\right.$ Disj $\left.^{\prime}\right)$
Let $X=X_{1} \dot{\cup} \cdots \dot{U} X_{k}$
For every partial assignment σ to X_{i}, we build $a_{\sigma} \in A_{i} \subseteq\{0,1\}^{m}$ as follows:

$$
a_{\sigma}(j)= \begin{cases}0 & \text { if } \sigma \text { satisfies } j^{\text {th }} \text { clause } \\ 1 & \text { otherwise }\end{cases}
$$

Note from above that $\mathrm{ETH} \Longrightarrow \mathrm{PSP}($ Disj). We will skip ETH $\Longrightarrow P S P($ MultEQ $)$
$\underline{\mathrm{W}[1] \neq \mathrm{FPT} \Longrightarrow \mathrm{PSP}(\mathrm{MultEQ})}$

Popular Hypotheses to PSP

SETH $\Longrightarrow P S P($ DisJ $)$
Let $X=X_{1} \dot{\cup} \cdots \dot{U} X_{k}$
For every partial assignment σ to X_{i}, we build $a_{\sigma} \in A_{i} \subseteq\{0,1\}^{m}$ as follows:

$$
a_{\sigma}(j)= \begin{cases}0 & \text { if } \sigma \text { satisfies } j^{\text {th }} \text { clause } \\ 1 & \text { otherwise }\end{cases}
$$

Note from above that ETH \Longrightarrow PSP(Disj). We will skip ETH $\Longrightarrow P S P($ MultEQ $)$
$\underline{\mathrm{W}[1] \neq \mathrm{FPT} \Longrightarrow \mathrm{PSP}(\text { MultEQ })}$
Starting point: ℓ-clique problem on graph $G(V, E)$

Popular Hypotheses to PSP

SETH \Longrightarrow PSP(Disj)
Let $X=X_{1} \dot{\cup} \cdots \dot{U} X_{k}$
For every partial assignment σ to X_{i}, we build $a_{\sigma} \in A_{i} \subseteq\{0,1\}^{m}$ as follows:

$$
a_{\sigma}(j)= \begin{cases}0 & \text { if } \sigma \text { satisfies } j^{\text {th }} \text { clause } \\ 1 & \text { otherwise }\end{cases}
$$

Note from above that ETH $\Longrightarrow P S P($ Disj). We will skip ETH $\Longrightarrow P S P($ MultEq $)$
$\underline{\mathrm{W}[1] \neq \mathrm{FPT} \Longrightarrow \mathrm{PSP}(\text { MultEQ })}$
Starting point: ℓ-clique problem on graph $G(V, E)$
Let $k=\binom{\ell}{2}$ and set $A_{i}=E$, i.e., each edge $\in\left(\{0,1\}^{\log |V|} \times\{\perp, \top\}\right)^{\ell}$

Popular Hypotheses to PSP

SETH \Longrightarrow PSP(Diss)
Let $X=X_{1} \dot{U} \cdots \dot{U} X_{k}$
For every partial assignment σ to X_{i}, we build $a_{\sigma} \in A_{i} \subseteq\{0,1\}^{m}$ as follows:

$$
a_{\sigma}(j)= \begin{cases}0 & \text { if } \sigma \text { satisfies } j^{\text {th }} \text { clause } \\ 1 & \text { otherwise }\end{cases}
$$

Note from above that $\mathrm{ETH} \Longrightarrow \mathrm{PSP}($ Diss). We will skip ETH $\Longrightarrow \mathrm{PSP}$ (MultEQ)
$\underline{\mathrm{W}[1]} \neq \mathrm{FPT} \Longrightarrow \mathrm{PSP}($ MultEQ $)$
Starting point: ℓ-clique problem on graph $G(V, E)$
Let $k=\binom{\ell}{2}$ and set $A_{i}=E$, i.e., each edge $\in\left(\{0,1\}^{\log |V|} \times\{\perp, T\}\right)^{\ell}$
Check for each vertex that the ℓ incident edges have assigned the same vertex (equality checking)

The Framework Revisited

Maxcover [CCKLMNT'17]

Maxcover [CCKLMNT'17]

Each W_{i} is a Right Super Node Each U_{i} is a Left Super Node

Maxcover [CCKLMNT'17]

Each W_{i} is a Right Super Node Each U_{i} is a Left Super Node
$S \subseteq W$ is a labeling of W if
$\forall i \in[k],\left|S \cap W_{i}\right|=1$

Maxcover [CCKLMNT'17]

Each W_{i} is a Right Super Node Each U_{i} is a Left Super Node
$S \subseteq W$ is a labeling of W if

$$
\forall i \in[k],\left|S \cap W_{i}\right|=1
$$

S covers U_{i} if

$$
\exists u \in U_{i}, \forall v \in S,(u, v) \in E
$$

Maxcover [CCKLMNT'17]

Each W_{i} is a Right Super Node Each U_{i} is a Left Super Node
$S \subseteq W$ is a labeling of W if

$$
\forall i \in[k],\left|S \cap W_{i}\right|=1
$$

S covers U_{i} if

$$
\exists u \in U_{i}, \forall v \in S,(u, v) \in E
$$

$\operatorname{MaxCover}(\Gamma, S)=$ Fraction of $U_{i}{ }^{\prime}$ s covered by S

Maxcover [CCKLMNT'17]

Each W_{i} is a Right Super Node Each U_{i} is a Left Super Node
$S \subseteq W$ is a labeling of W if

$$
\forall i \in[k],\left|S \cap W_{i}\right|=1
$$

S covers U_{i} if

$$
\exists u \in U_{i}, \forall v \in S,(u, v) \in E
$$

$\operatorname{MaxCover}(\Gamma, S)=$ Fraction of $U_{i}{ }^{\prime}$ s covered by S
$\operatorname{MaxCover}(\Gamma)=\max _{S} \operatorname{MaxCover}(\Gamma, S)$

Maxcover [CCKLMNT'17]

Determine if $\operatorname{MaxCover}(\Gamma)=1$ or $\operatorname{MaxCover}(\Gamma) \leq s$

Each W_{i} is a Right Super Node Each U_{i} is a Left Super Node
$S \subseteq W$ is a labeling of W if

$$
\forall i \in[k],\left|S \cap W_{i}\right|=1
$$

S covers U_{i} if

$$
\exists u \in U_{i}, \forall v \in S,(u, v) \in E
$$

$\operatorname{MaxCover}(\Gamma, S)=$ Fraction of $U_{i}{ }^{\prime}$ s covered by S
$\operatorname{MaxCover}(\Gamma)=\max _{S} \operatorname{MaxCover}(\Gamma, S)$

Parameters of SMP protocol Π for $f:\{0,1\}^{m \times k} \rightarrow\{0,1\}$:
Advice: γ bits
Randomness: R bits
Message Length: L bits
Soundness: s

PSP to Maxcover

Parameters of SMP protocol Π for $f:\{0,1\}^{m \times k} \rightarrow\{0,1\}$:

Advice: γ bits
Message Length: L bits

Randomness: R bits
Soundness: s

PSP to Maxcover

Parameters of SMP protocol Π for $f:\{0,1\}^{m \times k} \rightarrow\{0,1\}$:

Advice: γ bits
Message Length: L bits

Randomness: R bits
Soundness: s

PSP to Maxcover

Parameters of SMP protocol Π for $f:\{0,1\}^{m \times k} \rightarrow\{0,1\}$:

Advice: γ bits
Message Length: L bits

Randomness: R bits
Soundness: s

PSP to Maxcover

Parameters of SMP protocol Π for $f:\{0,1\}^{m \times k} \rightarrow\{0,1\}$:

Advice: γ bits
Message Length: L bits

Randomness: R bits
Soundness: s

2^{γ} instances of MaxCover

Nodes in U_{i} are all k-tuples of messages that referee accepts on randomness i and advice $\mu \in\{0,1\}^{\gamma}$

PSP to Maxcover

Parameters of SMP protocol Π for $f:\{0,1\}^{m \times k} \rightarrow\{0,1\}$:

Advice: γ bits
Message Length: L bits

Randomness: R bits

Soundness: s

2^{γ} instances of MaxCover

Nodes in U_{i} are all k-tuples of messages that referee accepts on randomness i and advice $\mu \in\{0,1\}^{\gamma}$

For every $x \in A_{j}$ and $z=\left(z_{1}, \ldots, z_{k}\right) \in U_{i}$, $(x, z) \in E \Longleftrightarrow z_{j}$ is message of player j on input x and randomness i

PSP to Maxcover

Parameters of SMP protocol Π for $f:\{0,1\}^{m \times k} \rightarrow\{0,1\}$:

Advice: γ bits
Message Length: L bits

Randomness: R bits

Soundness: s

2^{γ} instances of MaxCover

Nodes in U_{i} are all k-tuples of messages that referee accepts on randomness i and advice $\mu \in\{0,1\}^{\gamma}$

For every $x \in A_{j}$ and $z=\left(z_{1}, \ldots, z_{k}\right) \in U_{i}$, $(x, z) \in E \Longleftrightarrow z_{j}$ is message of player j on input x and randomness i

Soundness of Π
Soundness of MaxCover

Maxcover to Parameterized Dominating Set

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance $\Gamma=\left(U=\bigcup_{j=1}^{r} U_{j}, W=\bigcup_{j=1}^{k} W_{i}, E\right)$ to a k-DomSet instance G such that

Maxcover to Parameterized Dominating Set

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance $\Gamma=\left(U=\bigcup_{j=1}^{r} U_{j}, W=\bigcup_{j=1}^{k} W_{i}, E\right)$ to a k-DomSet instance G such that
© $\operatorname{If} \operatorname{MaxCover}(\Gamma)=1$, then $\operatorname{DomSet}(G)=k$
© If $\operatorname{MaxCover}(\Gamma) \leq \varepsilon$, then $\operatorname{DomSet}(G) \geq(1 / \varepsilon)^{1 / k} \cdot k$

Maxcover to Parameterized Dominating Set

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance $\Gamma=\left(U=\bigcup_{j=1}^{r} U_{j}, W=\bigcup_{j=1}^{k} W_{i}, E\right)$ to a k-DomSet instance G such that
© If $\operatorname{MaxCover}(\Gamma)=1$, then $\operatorname{DomSet}(G)=k$
© If $\operatorname{MaxCover}(\Gamma) \leq \varepsilon$, then $\operatorname{DomSet}(G) \geq(1 / \varepsilon)^{1 / k} \cdot k$
© $|V(G)|=|W|+\sum_{j \in[r]} k^{\left|U_{j}\right|}$

Maxcover to Parameterized Dominating Set

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance $\Gamma=\left(U=\bigcup_{j=1}^{r} U_{j}, W=\bigcup_{j=1}^{k} W_{i}, E\right)$ to a k-DomSet instance G such that
© $\operatorname{If} \operatorname{MaxCover}(\Gamma)=1$, then $\operatorname{DomSet}(G)=k$
© If $\operatorname{MaxCover}(\Gamma) \leq \varepsilon$, then $\operatorname{DomSet}(G) \geq(1 / \varepsilon)^{1 / k} \cdot k$
© $|V(G)|=|W|+\sum_{j \in[r]} k^{\left|U_{j}\right|}$
○ The reduction runs in time $O\left(|W|\left(\sum_{j \in[r]} k^{\left|U_{j}\right|}\right)\right)$.

Maxcover to Parameterized Dominating Set

Reduction from MaxCover to k-DomSet [CCKLMNT17]

There is a reduction from MaxCover instance $\Gamma=\left(U=\bigcup_{j=1}^{r} U_{j}, W=\bigcup_{j=1}^{k} W_{i}, E\right)$ to a k-DomSet instance G such that
(०) If $\operatorname{Max} \operatorname{Cover}(\Gamma)=1$, then $\operatorname{DomSet}(G)=k$
© If $\operatorname{MaxCover}(\Gamma) \leq \varepsilon$, then $\operatorname{DomSet}(G) \geq(1 / \varepsilon)^{1 / k} \cdot k$
© $|V(G)|=|W|+\sum_{j \in[r]} k^{\left|U_{j}\right|}$
© The reduction runs in time $O\left(|W|\left(\sum_{j \in[r]} k^{\left|U_{j}\right|}\right)\right)$.

$$
\text { We want } 1 / \varepsilon=\omega(1) \text { and }\left|U_{j}\right|=o(m)
$$

Required Parameters of SMP Protocols

Greedily we want SMP protocols:

Input: m bits
Message Length: $O_{k}(1)$ bits \quad Soundness: $1 / 2$

SMP Protocol for k-sumZero

SMP Protocol of Nisan [Nisan'94]:
Input: m bits
Message Length: $O(\log m)$ bits
Randomness: $O(\log m)$ bits
Soundness: $1 / 2$

SMP Protocol of Nisan [Nisan'94]:
Input: m bits
Message Length: $O(\log m)$ bits

SMP Protocol of Viola [Viola'15]:
Input: m bits
Message Length: $O_{k}(1)$ bits

Randomness: $O(\log m)$ bits
Soundness: $1 / 2$

Randomness: $O(m)$ bits
Soundness: $1 / 2$

SMP Protocol of Nisan [Nisan'94]:
Input: m bits
Message Length: $O(\log m)$ bits
SMP Protocol of Viola [Viola'15]:
Input: m bits
Message Length: $O_{k}(1)$ bits
New SMP Protocol:
Input: m bits
Message Length: $O_{k}(1)$ bits

Randomness: $O(\log m)$ bits
Soundness: $1 / 2$

Randomness: $O(m)$ bits
Soundness: $1 / 2$

Randomness: $O_{k}(\log m)$ bits
Soundness: $1 / 2$

SMP Protocol for k-multiequality

Idea: Use any binary code of constant rate and distance δ

SMP Protocol for k-multiequality

Idea: Use any binary code of constant rate and distance δ

SMP Protocol Parameters:

Input: m bits
Message Length: $O(1)$ bits

Randomness: $O(\log m)$ bits
Soundness: $1-\delta$

SMP Protocol for k-disjointness

A straightforward extension of Rubinstein's two-party protocol [${ }^{\prime}{ }^{\prime} 18, \mathrm{ARW}^{\prime}{ }^{\prime}{ }^{7}, \mathrm{AW}^{\prime}{ }^{\prime}{ }^{9}$]

SMP Protocol for k-disjointness

A straightforward extension of Rubinstein's two-party protocol [R'18,ARW'17, AW' ${ }^{\prime}$]

Good Pointwise Product (GPP) Codes

Let q be a prime power and $k \in \mathbb{N}$. A code C over \mathbb{F}_{q} is said to be a q-GHP code if there exists a constant $\delta(k)>0$ such that the following holds.
© C is systematic and can be encoded efficiently.
© Let C^{k} be the set of all k-pointwise product of codewords of C. Then, there exists a linear good code \widetilde{C} such that $C^{k} \subseteq \widetilde{C}$, i.e., \widetilde{C} has relative distance and rate greater than δ.

SMP Protocol for k-disjointness

A straightforward extension of Rubinstein's two-party protocol [R'18,ARW'17, AW' ${ }^{\prime}$]

Good Pointwise Product (GPP) Codes

Let q be a prime power and $k \in \mathbb{N}$. A code C over \mathbb{F}_{q} is said to be a q-GHP code if there exists a constant $\delta(k)>0$ such that the following holds.
© C is systematic and can be encoded efficiently.
© Let C^{k} be the set of all k-pointwise product of codewords of C. Then, there exists a linear good code \widetilde{C} such that $C^{k} \subseteq \widetilde{C}$, i.e., \widetilde{C} has relative distance and rate greater than δ.
© Player i divides his input x_{i} into T parts $x_{i}^{1} \ldots x_{i}^{T}$

SMP Protocol for k-disjointness

A straightforward extension of Rubinstein's two-party protocol [R'18,ARW'17, AW'og]

Good Pointwise Product (GPP) Codes

Let q be a prime power and $k \in \mathbb{N}$. A code C over \mathbb{F}_{q} is said to be a q-GHP code if there exists a constant $\delta(k)>0$ such that the following holds.
© C is systematic and can be encoded efficiently.
© Let C^{k} be the set of all k-pointwise product of codewords of C. Then, there exists a linear good code \widetilde{C} such that $C^{k} \subseteq \widetilde{C}$, i.e., \widetilde{C} has relative distance and rate greater than δ.
© Player i divides his input x_{i} into T parts $x_{i}^{1}, \ldots x_{i}^{T}$
© The advice μ of the referee is $\sum_{j \in[T]} \prod_{\ell \in[k]} C\left(x_{\ell}^{j}\right)$ - a codeword of \widetilde{C} !

SMP Protocol for k-disjointness

A straightforward extension of Rubinstein's two-party protocol [R'18,ARW'17, AW'og]

Good Pointwise Product (GPP) Codes

Let q be a prime power and $k \in \mathbb{N}$. A code C over \mathbb{F}_{q} is said to be a q-GHP code if there exists a constant $\delta(k)>0$ such that the following holds.
© C is systematic and can be encoded efficiently.
© Let C^{k} be the set of all k-pointwise product of codewords of C. Then, there exists a linear good code \widetilde{C} such that $C^{k} \subseteq \widetilde{C}$, i.e., \widetilde{C} has relative distance and rate greater than δ.
© Player i divides his input x_{i} into T parts $x_{i}^{1}, \ldots x_{i}^{T}$
© The advice μ of the referee is $\sum_{j \in[T]\} \in[k]} C\left(x_{\ell}^{j}\right)$ - a codeword of \widetilde{C} !
© Referee checks that μ is zero in the systematic part and on a random coordinate

SMP Protocol for k-disjointness

A straightforward extension of Rubinstein's two-party protocol [R'18,ARW'17, AW'og]

Good Pointwise Product (GPP) Codes

Let q be a prime power and $k \in \mathbb{N}$. A code C over \mathbb{F}_{q} is said to be a q-GHP code if there exists a constant $\delta(k)>0$ such that the following holds.
© C is systematic and can be encoded efficiently.
© Let C^{k} be the set of all k-pointwise product of codewords of C. Then, there exists a linear good code \widetilde{C} such that $C^{k} \subseteq \widetilde{C}$, i.e., \widetilde{C} has relative distance and rate greater than δ.
© Player i divides his input x_{i} into T parts $x_{i}^{1}, \ldots x_{i}^{T}$
© The advice μ of the referee is $\sum_{j \in[T]} \prod_{\ell \in[k]} C\left(x_{\ell}^{j}\right)$ - a codeword of \widetilde{C} !
© Referee checks that μ is zero in the systematic part and on a random coordinate

Advice: $O_{k}(m / T \log q)$ bits
Message Length: $T \log q$ bits

Randomness: $O_{k}(\log m)$ bits
Soundness: $1-\delta$

SMP Protocol for k-disjointness (continued)

SMP Protocol Parameters:

Advice: $O_{k}(m / T \log q)$ bits
Message Length: $T \log q$ bits

Randomness: $O_{k}(\log m)$ bits
Soundness: $1-\delta$

SMP Protocol for k-disjointness (continued)

SMP Protocol Parameters:

Advice: $O_{k}(m / T \log q)$ bits
Message Length: $T \log q$ bits

Randomness: $O_{k}(\log m)$ bits
Soundness: $1-\delta$

Reed Solomon Codes

Let $\ell \in \mathbb{N}$ and q be a prime number in $[4 \ell, 8 \ell)$. Then, there exists a q-GPP code of message length ℓ.

SMP Protocol for k-disjointness (continued)

SMP Protocol Parameters:

Advice: $O_{k}(m / T \log q)$ bits
Message Length: $T \log q$ bits

Randomness: $O_{k}(\log m)$ bits
Soundness: $1-\delta$

Reed Solomon Codes

Let $\ell \in \mathbb{N}$ and q be a prime number in $[4 \ell, 8 \ell)$. Then, there exists a q-GPP code of message length ℓ.

Algebraic Geometric Codes [GS'96, SAKSD'01]

There exists a constant $c \in \mathbb{N}$ such that for any prime number q greater than c there is a q^{2}-GPP code for every message length $\ell \in \mathbb{N}$.

Recap of the Results

© Any $T(k)$ approximation is W[1]-hard
© No $T(k)$ approximation algorithm in $N^{o(k)}$ time, assuming ETH
© No $T(k)$ approximation algorithm in $N^{k-\varepsilon}$ time, assuming SETH
© No $T(k)$ approximation algorithm in $N^{\lceil k / 2\rceil-\varepsilon}$ time, assuming k-SUM Hypothesis

Summary of the Framework

Important Open Questions

© Parameterized Dominating Set is W[2]-complete. Can we show every $T(k)$ approximation is also W[2]-hard?

Important Open Questions

© Parameterized Dominating Set is W[2]-complete. Can we show every $T(k)$ approximation is also W[2]-hard?
© Parameterized Clique is W[1]-complete. Can we show every $T(k)$ approximation is also W[1]-hard?

Important Open Questions

© Parameterized Dominating Set is W[2]-complete. Can we show every $T(k)$ approximation is also W[2]-hard?
© Parameterized Clique is W[1]-complete. Can we show every $T(k)$ approximation is also $\mathrm{W}[1]$-hard? Can we show 1.01 approximation is $\mathrm{W}[1]$-hard?

Open Questions

© Are there natural problems in PSP which do not have efficient MA protocols?

Open Questions

© Are there natural problems in PSP which do not have efficient MA protocols?
© Conceptually/Philosophically can we say something about the various time hypotheses?

THANK
 YOU!

The Framework

