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Task of Classifying Input Data
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What is Clustering?

Discrete
_—

© (T, A) is a metric space

© Input: X CTI' and S CT

© Output: A classification (C, 0):

o CcX and |C|=
00:X—>C

o o is good
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What is Good Classification?

©® k-means, k-median, k-center, min-sum, etc.

© k-median value of (C, 0)

D A, a(x)

xeX

© k-means value of (C, o)

D A, a(x))?

xeX

Clustering Problem for objective A

Yes: There is classification (C*, 0*), such that A(X, 0*) < B
No: For all classification (C, 0), we have A(X,0) > (1+0) - p
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(Ahmadian—Norouzi-Fard-Svensson-Ward’17)

© General metric: k-median > 2.67
(Byrka—Pensyl-Rybicki-Srinivasan—-Trinh’17)

© Euclidean metric k-means:

o Poly time approximation = 6.357
(Ahmadian—Norouzi-Fard—-Svensson-Ward’17)

o Fixed Dimension: PTAS (Cohen-Addad’18)
o Fixed k: PTAS (Kumar-Sabharwal-Sen’10)
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Hardness of Approximation

Discrete Version:

© General metric: k-means =~ 3.94, k-median = 1.74
(Guha-Khuller’9g)
) 1.17 . 1.06
© €r-metric: k-means < 40+, k-median < 4=+
(Trevisan’oo)
. 1.5 ) 1.14
© {1-metric: k-means < 46+, k-median < 40+
Trevisan’
( rev1sa1.1 00) 3.94 ‘ 174
© few-metric: k-means < o+ k-median <-4=64

(Guruswami-Indyk’o3)

Continuous Version:

1.07
k-means in Euclidean metric <-+-0043-

(Lee-Schmidt-Wright'17)
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Our Results (Cohen-Addad-K’19)

Discrete Version

k-means | k-median
{1-metric 1.56 1.14
{>-metric 1.17 1.06
lo-metric 3.94 1.74

Continuous Version

k-means in {p-metric = 1.07
k-median in {1-metric ~ 1.07

A New Embedding Framework to potentially
get Strong (tight?) Inapproximability results!
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Theorem (Feige’98)
Fix ¢ > 0. It is NP-hard to distinguish:
YES: Max Coverage is 1

NO: Max Coverage is at most 1 — /e + ¢

|

Theorem (Guha-Khuller'99)
Fix ¢ > 0. Given input X. It is NP-hard to distinguish:

YES: There exists (C*, 0*) such that 3 A(x, 0*(x))? < |X|
xeX

NO: For all (C, o) we have Y, A(x, 0(x))> > (1 +8/e —¢) - | X|
xeX
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k-means in Hamming metric

Theorem (Cohen-Addad-K’19)
Given input X, § € {0, 1}©00gm) Tt js UG-hard to distinguish:
YES: There exists (C*, 0*) such that )] ||(x — 0*(x)||g <n,
xeX
NO: For all (C, 0) we have ) |[(x — O(x)llg >1.56-1n,
xeX

where n’ = O(n(log n)?).
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Vertex Coverage

Vertex Coverage:
© Input: Graph (G, k)

© Objective: Max Fraction of Edges covered by k Vertices

Theorem (Austrin-Khot-Safra’11; Austrin-Stankovic¢’19)
Fix ¢ > 0. It is UG-hard to distinguish:

YES: Vertex Coverage is 1
NO: Vertex Coverage is at most 0.9292 — ¢

Edges — Data Points

Vertices — Candidate Centers

11
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Vertex/Edge Game

UA

£

3

A A A A
S
S~}

UA

Public Randomness

GOAL

Determine if vg € {ua,va}
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Vertex/Edge Game: Randomized Protocol

© Let®:F®" — [ %"

© Alice and Bob pick randomly 7 € [c - log 1]
© Bob sends to Alice 6(vp);

© Alice checks if 6(vp); € {6(ua)i, 6(va)i}
© Message length: log, q

© Soundness: 1 - O(A(6)) = O(1/4/7) (for AG codes)
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Embedding Transcript into Hamming metric

© Construct 7 : V — {0,1}9clogn
© Fixi € [c-logn]. Forany t € [g]:

(V)i =1 & B(o); = ¢

© S={t(v)|veV}

© X={1(u)Vv1(v)|(u,v)eE}
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Completeness of Reduction

© V' :={v1,...,vx} C V be avertex cover of G

© Buildo: X—>CCS

- {T(u) ifueV’

7(v) otherwise.
© Fixx,, € Xand i € [c -logn]
Distance between x,, , and o(x,, ) on block 7 is 1

© k-means objective is:

D= o(x)I3 = (c -log ) - |X|

xeX
16



Soundness of Reduction

© o0:X — C C 8§ is some classification

17



Soundness of Reduction

© o0:X — C C 8§ is some classification
©® Build V’/ C V of size k:

veV < 1(v)eC

17



Soundness of Reduction

© o0:X — C C 8§ is some classification
©® Build V’/ C V of size k:

veV < 1(v)eC

© E’ C E, such that V’ does not cover any e € E’

17



Soundness of Reduction

© o0:X — C C 8§ is some classification
©® Build V’/ C V of size k:

veV << 1(v)eC

© E’ C E, such that V’ does not cover any e € E’

© Fixx,,, € Xprand i € [c -logn]

Distance between x,, , and o(x,,,) on block 7 is mostly 3

17



Soundness of Reduction

© o0:X — C C 8§ is some classification
©® Build V’/ C V of size k:

veV << 1(v)eC
© E’ C E, such that V’ does not cover any e € E’
© Fixx,,, € Xprand i € [c -logn]
Distance between x,, , and o(x,,,) on block 7 is mostly 3

© k-means objective is:

DG = o) = (c -logn)* - [X \ Xer| +9-(c - log n)? - | X/
xeX
17



k-means in Hamming metric

Theorem (Cohen-Addad-K’19)
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Theorem (Cohen-Addad-K’19)
Given input X C {0,1}°0°8™_ Tt is UG-hard to distinguish:
YES: There exists (C*, 0*) such that ) ||(x — a*(x)||§ <n,
xeX
NO: For all (C, 0) we have ) |[(x — a(x)||(2) >1.21-n,
xeX

where n’ = O(n(log n)?).
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Continuous Case: Analysis

© X={t(u)Vvt(v)|(u,v)eE}

© Completeness: Choose centers corresponding to vertices

©® Soundness: ¢ : X — C C {0, 1}7¢1°8" js some classification
© In opt. solution: [[o(xy,)|llo < 3 on every block B

o Mostly 3 or 2 = cluster size is small
o Mostly 0 = pay cost 4 per block

o Mostly 1 = decode vertex

20
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Other Metrics: More Embedding

Gap Number of £,,-metric

Largest & > 1 for which we can realize V' U E of K, such that

lu—ell,=lifuce and |lu—ell,>aifudge

Replace each block by the embedding realizing gap number
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Euclidean k-means: Continuous Case

© k-means cost is sum of all pairwise intra-cluster squared
distances

© Look at induced subgraph of each cluster

o Adjacent edges squared distance is 2
o Non-adjacent edges squared distance is 4

o Argue that # of edges in cluster > max degree of cluster
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Our Result

Discrete Version

k-means | k-median
{1-metric 1.56 1.14
{>-metric 1.17 1.06
{-metric 3.94 1.74

Continuous Version

k-means in {-metric = 1.07
k-median in {1-metric ~ 1.07

26



Stronger Inapproximability in £..-metric

Two ingredients:

27



Stronger Inapproximability in €.,-metric

Two ingredients:

Theorem (Essentially Feige’98)

For every 6 > 0 there is some /1 € N such that deciding an
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on h-uniform hypergraphs is NP-hard.
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Stronger Inapproximability in €.,-metric

Two ingredients:

Theorem (Essentially Feige’98)

For every 6 > 0 there is some /1 € N such that deciding an
instance of (1 — 1/e + ¢)-hypergraph vertex coverage problem
on h-uniform hypergraphs is NP-hard.

Gap hypergraph number in {w-metric is 3
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Key Takeaways

© Improved Inapproximability of

© k-means and k-median

© In {p-metrics

© Using Transcript of Membership Protocol

© And Geometric Realization of Complete Graphs

© And Complete Hypergraphs
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Open Problem 1

Can we embed vertices and hyperedges
of h-uniform complete hypergraph in Hamming metric
with gap number 3?
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Open Problem 1

Can we embed vertices and hyperedges
of h-uniform complete hypergraph in Hamming metric
with gap number 3?

© Current Reduction gives gap number 1 + 2/(1-1)

© Dimension of embedding doesn’t matter for £,-metric

o Johnson-Lindenstrauss dimension reduction
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Open Problem 2

Can we embed vertices and edges of K,
in Euclidean metric with gap number 2?
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Open Problem 2

Can we embed vertices and edges of K,
in Euclidean metric with gap number 2?

© Itholds forn =3

© Can we prove an upper bound of 2?
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Open Problem 3

Can we go beyond Triangle Inequality Barrier?
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Open Problem 3

Can we go beyond Triangle Inequality Barrier?

© Can we show >1 + 8/e inapproximability of k-means
in any metric?

© Can we show >1 + 2/e inapproximability of k-median
in any metric?
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