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} (Γ,∆) is a metric space
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◦ C ⊆ Γ and |C | � k

◦ σ : X → C
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What is Good Classification?

} k-means, k-median, k-center, min-sum, etc.

} k-median value of (C, σ)∑
x∈X

∆(x , σ(x))

} k-means value of (C, σ)∑
x∈X

∆(x , σ(x))2

Clustering Problem for objective Λ

No: For all classification (C, σ), we have Λ(X, σ) > (1 + δ) · β
Yes: There is classification (C∗ , σ∗), such that Λ(X, σ∗) ≤ β
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Exact Computation

} NP-hard when k � 2 (Dasgupta’07)

} NP-hard in Euclidean plane
(Megiddo–Supowit’84,
Mahajan–Nimbhorkar–Varadarajan’12)

} W[2]-hard in general metric (Guha-Khuller’99)
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Approximation Algorithms

} General metric: k-means ≥ 9
(Ahmadian–Norouzi-Fard–Svensson–Ward’17)

} General metric: k-median ≥ 2.67
(Byrka–Pensyl–Rybicki–Srinivasan–Trinh’17)

} Euclidean metric k-means:

◦ Poly time approximation ≈ 6.357
(Ahmadian–Norouzi-Fard–Svensson–Ward’17)

◦ Fixed Dimension: PTAS (Cohen-Addad’18)

◦ Fixed k: PTAS (Kumar–Sabharwal–Sen’10)
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Hardness of Approximation

Discrete Version:

} General metric: k-means ≈ 3.94, k-median ≈ 1.74
(Guha-Khuller’99)

} `2-metric: k-means� 1.01, k-median� 1.01
(Trevisan’00)

} `1-metric: k-means� 1.01, k-median� 1.01
(Trevisan’00)

} `∞-metric: k-means� 1.01, k-median� 1.01
(Guruswami-Indyk’03)

Continuous Version:

k-means in Euclidean metric < 1.0013
(Lee-Schmidt-Wright’17)

1.17 1.06

1.56 1.14

3.94 1.74

1.07
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Our Results (Cohen-Addad–K’19)

Discrete Version

k-means k-median

`1-metric 1.56 1.14

`2-metric 1.17 1.06

`∞-metric 3.94 1.74

Continuous Version

k-means in `2-metric ≈ 1.07
k-median in `1-metric ≈ 1.07

A New Embedding Framework to potentially
get Strong (tight?) Inapproximability results!
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Warm up: General Metrics

Max Coverage:

} Input: Universe and Collection of Subsets (U,S, k)
} Objective: Max Fraction of U covered by k subsets in S

Theorem (Feige’98)
Fix ε > 0. It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is at most 1 − 1/e + ε
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k-means in Hamming metric

Theorem (Cohen-Addad–K’19)
Given input X,S⊆ {0, 1}O(log n). It is UG-hard to distinguish:

YES: There exists (C∗ , σ∗) such that
∑

x∈X
‖(x − σ∗(x)‖2

0 ≤ n′,

NO: For all (C, σ) we have
∑

x∈X
‖(x − σ(x)‖2

0 ≥ 1.56 · n′,

where n′ � O(n(log n)2).
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Vertex Coverage

Vertex Coverage:

} Input: Graph (G, k)

} Objective: Max Fraction of Edges covered by k Vertices

Theorem (Austrin-Khot-Safra’11; Austrin-Stanković’19)
Fix ε > 0. It is UG-hard to distinguish:

YES: Vertex Coverage is 1

NO: Vertex Coverage is at most 0.9292 − ε

Edges→ Data Points

Vertices→ Candidate Centers
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Vertex/Edge Game

vB

vA

uA

Public Randomness

GOAL

Determine if vB ∈ {uA , vA}
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Vertex/Edge Game: Protocols

} Deterministic Protocol:

◦ Message length: O(log n) bits
◦ Completeness: 1, Soundness: 0

} Randomized Protocol:

◦ Message length: Oε(1) bits
◦ Completeness: 1, Soundness: ε
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Vertex/Edge Game: Randomized Protocol

} Let C : F log n
q → F

c·log n
q

} Alice and Bob pick randomly i ∈ [c · log n]
} Bob sends to Alice C(vB)i

} Alice checks if C(vB)i ∈ {C(uA)i , C(vA)i}
} Message length: log2 q

} Soundness: 1 − O(∆(C)) ≈ O(1/√q) (for AG codes)
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Embedding Transcript into Hamming metric

} Construct τ : V → {0, 1}q·c·log n

} Fix i ∈ [c · log n]. For any t ∈ [q]:
τ(v)i ,t � 1⇐⇒ C(v)i � t

} S� {τ(v) | v ∈ V}
} X � {τ(u) ∨ τ(v) | (u , v) ∈ E}
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Completeness of Reduction

} V′ :� {v1 , . . . , vk} ⊆ V be a vertex cover of G

} Build σ : X → C ⊆ S

σ(xu ,v) �



τ(u) if u ∈ V′

τ(v) otherwise.

} Fix xu ,v ∈ X and i ∈ [c · log n]

Distance between xu ,v and σ(xu ,v) on block i is 1

} k-means objective is:∑
x∈X

‖(x − σ(x)‖2
0 � (c · log n)2 · |X |
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Soundness of Reduction

} σ : X → C ⊆ S is some classification

} Build V′ ⊆ V of size k:

v ∈ V′⇐⇒ τ(v) ∈ C

} E′ ⊆ E, such that V′ does not cover any e ∈ E′

} Fix xu ,v ∈ XE′ and i ∈ [c · log n]

Distance between xu ,v and σ(xu ,v) on block i is mostly 3

} k-means objective is:∑
x∈X

‖(x − σ(x)‖2
0 � (c · log n)2 · |X \ XE′ | + 9·(c · log n)2 · |XE′ |
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k-means in Hamming metric

Theorem (Cohen-Addad–K’19)
Given input X,S⊆ {0, 1}O(log n). It is UG-hard to distinguish:

YES: There exists (C∗ , σ∗) such that
∑

x∈X
‖(x − σ∗(x)‖2

0 ≤ n′,

NO: For all (C, σ) we have
∑

x∈X
‖(x − σ(x)‖2

0 ≥ 1.56 · n′,

where n′ � O(n(log n)2).
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k-means in Hamming metric: Continuous Case

Theorem (Cohen-Addad–K’19)
Given input X ⊆ {0, 1}O(log n). It is UG-hard to distinguish:

YES: There exists (C∗ , σ∗) such that
∑

x∈X
‖(x − σ∗(x)‖2

0 ≤ n′,

NO: For all (C, σ) we have
∑

x∈X
‖(x − σ(x)‖2

0 ≥ 1.21 · n′,

where n′ � O(n(log n)2).
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k-means in Hamming metric: Continuous Case

Theorem (Cohen-Addad–K’19)
Given input X ⊆ {0, 1}O(log n). It is UG-hard to distinguish:

YES: There exists (C∗ , σ∗) such that
∑
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k-means in Hamming metric: Continuous Case

Theorem (Cohen-Addad–K’19)
Given input X ⊆ {0, 1}O(log n). It is UG-hard to distinguish:

YES: There exists (C∗ , σ∗) such that
∑

x∈X
‖(x − σ∗(x)‖2

0 ≤ n′,

NO: For all (C, σ) we have
∑

x∈X
‖(x − σ(x)‖2
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Continuous Case: Analysis

} X � {τ(u) ∨ τ(v) | (u , v) ∈ E}

} Completeness: Choose centers corresponding to vertices

} Soundness: σ : X → C ⊆ {0, 1}q·c·log n is some classification

} In opt. solution: ‖σ(xu ,v)|B‖0 ≤ 3 on every block B

◦ Mostly 3 or 2⇒ cluster size is small

◦ Mostly 0⇒ pay cost 4 per block

◦ Mostly 1⇒ decode vertex

20



Continuous Case: Analysis

} X � {τ(u) ∨ τ(v) | (u , v) ∈ E}
} Completeness: Choose centers corresponding to vertices

} Soundness: σ : X → C ⊆ {0, 1}q·c·log n is some classification

} In opt. solution: ‖σ(xu ,v)|B‖0 ≤ 3 on every block B

◦ Mostly 3 or 2⇒ cluster size is small

◦ Mostly 0⇒ pay cost 4 per block

◦ Mostly 1⇒ decode vertex

20



Continuous Case: Analysis

} X � {τ(u) ∨ τ(v) | (u , v) ∈ E}
} Completeness: Choose centers corresponding to vertices

} Soundness: σ : X → C ⊆ {0, 1}q·c·log n is some classification

} In opt. solution: ‖σ(xu ,v)|B‖0 ≤ 3 on every block B

◦ Mostly 3 or 2⇒ cluster size is small

◦ Mostly 0⇒ pay cost 4 per block

◦ Mostly 1⇒ decode vertex

20



Continuous Case: Analysis

} X � {τ(u) ∨ τ(v) | (u , v) ∈ E}
} Completeness: Choose centers corresponding to vertices

} Soundness: σ : X → C ⊆ {0, 1}q·c·log n is some classification

} In opt. solution: ‖σ(xu ,v)|B‖0 ≤ 3 on every block B

◦ Mostly 3 or 2⇒ cluster size is small

◦ Mostly 0⇒ pay cost 4 per block

◦ Mostly 1⇒ decode vertex

20



Continuous Case: Analysis

} X � {τ(u) ∨ τ(v) | (u , v) ∈ E}
} Completeness: Choose centers corresponding to vertices

} Soundness: σ : X → C ⊆ {0, 1}q·c·log n is some classification

} In opt. solution: ‖σ(xu ,v)|B‖0 ≤ 3 on every block B

◦ Mostly 3 or 2⇒ cluster size is small

◦ Mostly 0⇒ pay cost 4 per block

◦ Mostly 1⇒ decode vertex

20



Continuous Case: Analysis

} X � {τ(u) ∨ τ(v) | (u , v) ∈ E}
} Completeness: Choose centers corresponding to vertices

} Soundness: σ : X → C ⊆ {0, 1}q·c·log n is some classification

} In opt. solution: ‖σ(xu ,v)|B‖0 ≤ 3 on every block B

◦ Mostly 3 or 2⇒ cluster size is small

◦ Mostly 0⇒ pay cost 4 per block

◦ Mostly 1⇒ decode vertex

20



Continuous Case: Analysis

} X � {τ(u) ∨ τ(v) | (u , v) ∈ E}
} Completeness: Choose centers corresponding to vertices

} Soundness: σ : X → C ⊆ {0, 1}q·c·log n is some classification

} In opt. solution: ‖σ(xu ,v)|B‖0 ≤ 3 on every block B

◦ Mostly 3 or 2⇒ cluster size is small

◦ Mostly 0⇒ pay cost 4 per block

◦ Mostly 1⇒ decode vertex

20



Our Result

Discrete Version

k-means k-median

`1-metric 1.56 1.14

`2-metric 1.17 1.06

`∞-metric 3.94 1.74

Continuous Version

k-means in `2-metric ≈ 1.07
k-median in `1-metric ≈ 1.07

21



Other Metrics: More Embedding

Gap Number of `p-metric

Largest α > 1 for which we can realize V ∪ E of Kn such that

‖u − e‖p�1 if u ∈ e and ‖u − e‖p ≥ α if u < e

Replace each block by the embedding realizing gap number
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Gap Number of `p-metrics

} `0/`1-metric = 3

} `2-metric > 1.85

} `∞-metric � 3
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Euclidean k-means: Continuous Case

} k-means cost is sum of all pairwise intra-cluster squared
distances

} Look at induced subgraph of each cluster

◦ Adjacent edges squared distance is 2

◦ Non-adjacent edges squared distance is 4

◦ Argue that # of edges in cluster� max degree of cluster
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Stronger Inapproximability in `∞-metric

Two ingredients:

Theorem (Essentially Feige’98)
For every δ > 0 there is some h ∈ N such that deciding an
instance of (1 − 1/e + ε)-hypergraph vertex coverage problem
on h-uniform hypergraphs is NP-hard.

Gap hypergraph number in `∞-metric is 3
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Key Takeaways

} Improved Inapproximability of

} k-means and k-median

} In `p-metrics

} Using Transcript of Membership Protocol

} And Geometric Realization of Complete Graphs

} And Complete Hypergraphs
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Open Problem 1

Can we embed vertices and hyperedges
of h-uniform complete hypergraph in Hamming metric

with gap number 3?

} Current Reduction gives gap number 1 + 2/(h−1)

} Dimension of embedding doesn’t matter for `2-metric
◦ Johnson-Lindenstrauss dimension reduction
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Open Problem 2

Can we embed vertices and edges of Kn

in Euclidean metric with gap number 2?

} It holds for n � 3

} Can we prove an upper bound of 2?
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Open Problem 3

Can we go beyond Triangle Inequality Barrier?

} Can we show >1 + 8/e inapproximability of k-means
in any metric?

} Can we show >1 + 2/e inapproximability of k-median
in any metric?
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THANK
YOU!
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