Inapproximability of Clustering in ℓ_p -metrics

Karthik C. S. (Weizmann Institute of Science)

Joint work with

Vincent Cohen-Addad

(Sorbonne Université)

Task of Classifying Input Data

 \odot (Γ , Δ) is a metric space

- \odot (Γ , Δ) is a metric space
- \odot Input: $X \subseteq \Gamma$

- \odot (Γ , Δ) is a metric space
- in input: X ⊆ Γ
- ◎ Output: A classification (C, σ) :

- \odot (Γ , Δ) is a metric space
- $in ext{Input: } X ⊆ Γ$
- 𝔅 Output: A classification (*C*, *σ*):
 - $C \subseteq \Gamma$ and |C| = k

- \odot (Γ , Δ) is a metric space
- in input: X ⊆ Γ
- ◎ Output: A classification (C, σ):
 - $C \subseteq \Gamma$ and |C| = k
 - $\circ \ \sigma: X \to C$

- \odot (Γ , Δ) is a metric space
- $in ext{Input: } X ⊆ Γ$
- ◎ Output: A classification (C, σ):
 - $C \subseteq \Gamma$ and |C| = k
 - $\circ \ \sigma: X \to C$
 - σ is good

Continuous Version

- \odot (Γ , Δ) is a metric space
- in input: X ⊆ Γ
- ◎ Output: A classification (C, σ):
 - $C \subseteq \Gamma$ and |C| = k
 - $\circ \ \sigma: X \to C$
 - σ is good

Discrete Continuous Version

- \odot (Γ , Δ) is a metric space
- $in ext{Input: } X ⊆ Γ$
- ◎ Output: A classification (C, σ):
 - $C \subseteq \Gamma$ and |C| = k
 - $\circ \ \sigma: X \to C$
 - σ is good

Discrete Continuous Version

- \odot (Γ , Δ) is a metric space
- C $\subseteq \mathbf{X}$ and |C| = k
 - $\circ \ \sigma: X \to C$
 - σ is good

◎ *k*-means, *k*-median, *k*-center, min-sum, etc.

◎ *k*-means, *k*-median, *k*-center, min-sum, etc.

 \odot *k*-median value of (*C*, σ)

$$\sum_{x \in X} \Delta(x, \sigma(x))$$

◎ *k*-means, *k*-median, *k*-center, min-sum, etc.

 \odot *k*-median value of (*C*, σ)

$$\sum_{x \in X} \Delta(x, \sigma(x))$$

𝔅 *k*-means value of (*C*, *σ*)

$$\sum_{x \in X} \Delta(x, \sigma(x))^2$$

◎ *k*-means, *k*-median, *k*-center, min-sum, etc.

 \odot *k*-median value of (*C*, σ)

$$\sum_{x \in X} \Delta(x, \sigma(x))$$

𝔅 *k*-means value of (*C*, *σ*)

$$\sum_{x \in X} \Delta(x, \sigma(x))^2$$

Clustering Problem for objective Λ

◎ *k*-means, *k*-median, *k*-center, min-sum, etc.

𝔅 *k*-median value of (*C*, *σ*)

$$\sum_{x \in X} \Delta(x, \sigma(x))$$

𝔅 *k*-means value of (*C*, *σ*)

$$\sum_{x \in X} \Delta(x, \sigma(x))^2$$

Clustering Problem for objective Λ

Yes: There is classification (C^*, σ^*) , such that $\Lambda(X, \sigma^*) \leq \beta$

◎ *k*-means, *k*-median, *k*-center, min-sum, etc.

𝔅 *k*-median value of (*C*, *σ*)

$$\sum_{x \in X} \Delta(x, \sigma(x))$$

𝔅 *k*-means value of (*C*, *σ*)

$$\sum_{x \in X} \Delta(x, \sigma(x))^2$$

Clustering Problem for objective Λ

Yes: There is classification (C^*, σ^*) , such that $\Lambda(X, \sigma^*) \leq \beta$ No: For all classification (C, σ) , we have $\Lambda(X, \sigma) > (1 + \delta) \cdot \beta$ ◎ NP-hard when k = 2 (Dasgupta'07)

- ◎ NP-hard when k = 2 (Dasgupta'07)
- NP-hard in Euclidean plane
 (Megiddo–Supowit'84, Mahajan–Nimbhorkar–Varadarajan'12)

- ◎ NP-hard when k = 2 (Dasgupta'07)
- NP-hard in Euclidean plane (Megiddo–Supowit'84, Mahajan–Nimbhorkar–Varadarajan'12)
- ◎ W[2]-hard in general metric (Guha-Khuller'99)

◎ General metric: k-means ≥ 9
 (Ahmadian–Norouzi-Fard–Svensson–Ward'17)

- ◎ General metric: k-means ≥ 9
 (Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ◎ General metric: k-median ≥ 2.67
 (Byrka–Pensyl–Rybicki–Srinivasan–Trinh'17)

- ◎ General metric: k-means ≥ 9
 (Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ◎ General metric: k-median ≥ 2.67
 (Byrka–Pensyl–Rybicki–Srinivasan–Trinh'17)
- Euclidean metric *k*-means:

- ◎ General metric: k-means ≥ 9
 (Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ◎ General metric: k-median ≥ 2.67
 (Byrka–Pensyl–Rybicki–Srinivasan–Trinh'17)
- Euclidean metric *k*-means:
 - Poly time approximation ≈ 6.357 (Ahmadian–Norouzi-Fard–Svensson–Ward'17)

- ◎ General metric: k-means ≥ 9
 (Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ◎ General metric: k-median ≥ 2.67
 (Byrka–Pensyl–Rybicki–Srinivasan–Trinh'17)
- Euclidean metric *k*-means:
 - Poly time approximation ≈ 6.357 (Ahmadian–Norouzi-Fard–Svensson–Ward'17)
 - Fixed Dimension: PTAS (Cohen-Addad'18)

- ◎ General metric: k-means ≥ 9
 (Ahmadian–Norouzi-Fard–Svensson–Ward'17)
- ◎ General metric: k-median ≥ 2.67
 (Byrka–Pensyl–Rybicki–Srinivasan–Trinh'17)
- Euclidean metric *k*-means:
 - Poly time approximation ≈ 6.357 (Ahmadian–Norouzi-Fard–Svensson–Ward'17)
 - Fixed Dimension: PTAS (Cohen-Addad'18)
 - Fixed k: PTAS (Kumar–Sabharwal–Sen'10)

Discrete Version:

Discrete Version:

 General metric: *k*-means ≈ 3.94, *k*-median ≈ 1.74 (Guha-Khuller'99)

Discrete Version:

- General metric: *k*-means ≈ 3.94, *k*-median ≈ 1.74 (Guha-Khuller'99)
- ℓ₂-metric: k-means ≪ 1.01, k-median ≪ 1.01

 (Trevisan'oo)
- *l*₁-metric: *k*-means ≪ 1.01, *k*-median ≪ 1.01 (Trevisan'oo)

Discrete Version:

- General metric: *k*-means ≈ 3.94, *k*-median ≈ 1.74 (Guha-Khuller'99)
- ℓ₂-metric: k-means ≪ 1.01, k-median ≪ 1.01

 (Trevisan'oo)
- *l*₁-metric: *k*-means ≪ 1.01, *k*-median ≪ 1.01 (Trevisan'oo)
- ℓ_∞-metric: k-means ≪ 1.01, k-median ≪ 1.01

 (Guruswami-Indyk'03)

Discrete Version:

- General metric: *k*-means ≈ 3.94, *k*-median ≈ 1.74 (Guha-Khuller'99)
- ℓ₂-metric: k-means ≪ 1.01, k-median ≪ 1.01

 (Trevisan'oo)
- *l*₁-metric: *k*-means ≪ 1.01, *k*-median ≪ 1.01 (Trevisan'oo)
- ℓ_∞-metric: k-means ≪ 1.01, k-median ≪ 1.01

 (Guruswami-Indyk'03)

Continuous Version:

k-means in Euclidean metric < 1.0013 (Lee-Schmidt-Wright'17)

Discrete Version:

- General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)
- (Curta Tertaher 99) 1.17 (ℓ_2 -metric: k-means $\ll \frac{1.01}{1.01}$, k-median $\ll \frac{1.06}{1.01}$ (Trevisan'00) 1.7
- (Trevisan'oo) $^{1.56}_{1.01}$, k-median $\ll \frac{1.14}{1.01}$
- (Guruswami-Indyk'03) 3.94 1.74k-median $\ll \frac{1.74}{1.01}$

Continuous Version:

k-means in Euclidean metric $<\frac{1.07}{1.0013}$ (Lee-Schmidt-Wright'17)

Our Results (Cohen-Addad–K'19)

Discrete Version

	k-means	<i>k</i> -median
ℓ_1 -metric	1.56	1.14
ℓ_2 -metric	1.17	1.06
ℓ_{∞} -metric	3.94	1.74

Our Results (Cohen-Addad–K'19)

Discrete Version

	k-means	k-median
ℓ_1 -metric	1.56	1.14
ℓ ₂ -metric	1.17	1.06
ℓ_{∞} -metric	3.94	1.74

Continuous Version

k-means in ℓ_2 -metric ≈ 1.07 *k*-median in ℓ_1 -metric ≈ 1.07

Our Results (Cohen-Addad–K'19)

Discrete Version

	k-means	k-median
ℓ_1 -metric	1.56	1.14
ℓ_2 -metric	1.17	1.06
ℓ_{∞} -metric	3.94	1.74

Continuous Version

k-means in ℓ_2 -metric ≈ 1.07 *k*-median in ℓ_1 -metric ≈ 1.07

A New Embedding Framework to potentially get Strong (tight?) Inapproximability results!

◎ Input: Universe and Collection of Subsets (U, S, k)

- ◎ Input: Universe and Collection of Subsets (U, δ, k)
- ◎ Objective: Max Fraction of *U* covered by *k* subsets in *&*

- ◎ Input: Universe and Collection of Subsets (U, δ, k)
- ◎ Objective: Max Fraction of *U* covered by *k* subsets in *&*

Theorem (Feige'98)

Fix $\varepsilon > 0$. It is NP-hard to distinguish:

- ◎ Input: Universe and Collection of Subsets (U, δ, k)
- ◎ Objective: Max Fraction of *U* covered by *k* subsets in *&*

Theorem (Feige'98)

Fix $\varepsilon > 0$. It is NP-hard to distinguish:

YES: Max Coverage is 1

- ◎ Input: Universe and Collection of Subsets (U, δ, k)
- ◎ Objective: Max Fraction of *U* covered by *k* subsets in *&*

Theorem (Feige'98)

Fix $\varepsilon > 0$. It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is at most $1 - \frac{1}{e} + \varepsilon$

Theorem (Feige'98)

Fix $\varepsilon > 0$. It is NP-hard to distinguish:

YES: Max Coverage is 1

NO: Max Coverage is at most $1 - \frac{1}{e} + \varepsilon$

Theorem (Feige'98)

Fix $\varepsilon > 0$. It is NP-hard to distinguish:

```
YES: Max Coverage is 1
```

NO: Max Coverage is at most $1 - \frac{1}{e} + \varepsilon$

Theorem (Guha-Khuller'99)

Fix $\varepsilon > 0$. Given input X. It is NP-hard to distinguish:

Theorem (Feige'98)

Fix $\varepsilon > 0$. It is NP-hard to distinguish:

```
YES: Max Coverage is 1
```

NO: Max Coverage is at most $1 - \frac{1}{e} + \varepsilon$

Theorem (Guha-Khuller'99)

Fix $\varepsilon > 0$. Given input X. It is NP-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\sum_{x \in X} \Delta(x, \sigma^*(x))^2 \le |X|$

Theorem (Feige'98)

Fix $\varepsilon > 0$. It is NP-hard to distinguish:

```
YES: Max Coverage is 1
```

NO: Max Coverage is at most $1 - \frac{1}{e} + \varepsilon$

Theorem (Guha-Khuller'99)

Fix $\varepsilon > 0$. Given input X. It is NP-hard to distinguish:

YES: There exists
$$(C^*, \sigma^*)$$
 such that $\sum_{x \in X} \Delta(x, \sigma^*(x))^2 \le |X|$
NO: For all (C, σ) we have $\sum_{x \in X} \Delta(x, \sigma(x))^2 \ge (1 + 8/e - \varepsilon) \cdot |X|$

Theorem (Cohen-Addad–K'19)

Given input $X, S \subseteq \{0, 1\}^{O(\log n)}$. It is UG-hard to distinguish:

Theorem (Cohen-Addad–K'19)

Given input *X*, $S \subseteq \{0, 1\}^{O(\log n)}$. It is UG-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\sum_{x \in X} ||(x - \sigma^*(x))|_0^2 \le n'$,

Theorem (Cohen-Addad–K'19)

Given input $X, S \subseteq \{0, 1\}^{O(\log n)}$. It is UG-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\sum_{x \in X} ||(x - \sigma^*(x))|_0^2 \le n'$, NO: For all (C, σ) we have $\sum_{x \in X} ||(x - \sigma(x))|_0^2 \ge 1.56 \cdot n'$, where $n' = O(n(\log n)^2)$.

 \odot Input: Graph (*G*, *k*)

- \odot Input: Graph (*G*, *k*)
- ◎ Objective: Max Fraction of Edges covered by *k* Vertices

- \odot Input: Graph (*G*, *k*)
- ◎ Objective: Max Fraction of Edges covered by *k* Vertices

Theorem (Austrin-Khot-Safra'11; Austrin-Stanković'19)

Fix $\varepsilon > 0$. It is **UG-hard** to distinguish:

- \odot Input: Graph (*G*, *k*)
- ◎ Objective: Max Fraction of Edges covered by *k* Vertices

Theorem (Austrin-Khot-Safra'11; Austrin-Stanković'19)

Fix $\varepsilon > 0$. It is **UG-hard** to distinguish:

YES: Vertex Coverage is 1

- \odot Input: Graph (*G*, *k*)
- ◎ Objective: Max Fraction of Edges covered by *k* Vertices

Theorem (Austrin-Khot-Safra'11; Austrin-Stanković'19)

Fix $\varepsilon > 0$. It is **UG-hard** to distinguish:

YES: Vertex Coverage is 1

NO: Vertex Coverage is at most $0.9292 - \varepsilon$

- \odot Input: Graph (*G*, *k*)
- ◎ Objective: Max Fraction of Edges covered by *k* Vertices

Theorem (Austrin-Khot-Safra'11; Austrin-Stanković'19)

Fix $\varepsilon > 0$. It is **UG-hard** to distinguish:

YES: Vertex Coverage is 1

NO: Vertex Coverage is at most $0.9292 - \varepsilon$

Edges \rightarrow Data Points Vertices \rightarrow Candidate Centers

Public Randomness

O Deterministic Protocol:

- Message length: $O(\log n)$ bits
- Completeness: 1, Soundness: 0

O Deterministic Protocol:

• Message length: $O(\log n)$ bits

• Completeness: 1, Soundness: 0

Randomized Protocol:

• Message length: $O_{\varepsilon}(1)$ bits

O Deterministic Protocol:

- Message length: $O(\log n)$ bits
- Completeness: 1, Soundness: 0
- Randomized Protocol:
 - Message length: $O_{\varepsilon}(1)$ bits
 - Completeness: 1, Soundness: ϵ

Vertex/Edge Game: Randomized Protocol

$$\odot \text{ Let } \mathscr{C}: \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

$$o Let \mathscr{C} : \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

◎ Alice and Bob pick randomly $i \in [c \cdot \log n]$

$$o Let \mathscr{C} : \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

- ◎ Alice and Bob pick randomly $i \in [c \cdot \log n]$
- ◎ Bob sends to Alice $\mathscr{C}(v_B)_i$

$$\odot \text{ Let } \mathscr{C} : \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

- ◎ Alice and Bob pick randomly $i \in [c \cdot \log n]$
- Bob sends to Alice $\mathscr{C}(v_B)_i$
- ◎ Alice checks if $\mathscr{C}(v_B)_i \in \{\mathscr{C}(u_A)_i, \mathscr{C}(v_A)_i\}$

$$\odot \text{ Let } \mathscr{C} : \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

- ◎ Alice and Bob pick randomly $i \in [c \cdot \log n]$
- ◎ Bob sends to Alice $\mathscr{C}(v_B)_i$
- ◎ Alice checks if $\mathscr{C}(v_B)_i \in \{\mathscr{C}(u_A)_i, \mathscr{C}(v_A)_i\}$
- \odot Message length: $\log_2 q$

$$\odot \text{ Let } \mathscr{C} : \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

- ◎ Alice and Bob pick randomly $i \in [c \cdot \log n]$
- Bob sends to Alice $\mathscr{C}(v_B)_i$
- ◎ Alice checks if $\mathscr{C}(v_B)_i \in \{\mathscr{C}(u_A)_i, \mathscr{C}(v_A)_i\}$
- Message length: $\log_2 q$
- ⊚ Soundness: $1 O(\Delta(\mathscr{C}))$

$$o Let \mathscr{C} : \mathbb{F}_q^{\log n} \to \mathbb{F}_q^{c \cdot \log n}$$

- ◎ Alice and Bob pick randomly $i \in [c \cdot \log n]$
- Bob sends to Alice $\mathscr{C}(v_B)_i$
- ◎ Alice checks if $\mathscr{C}(v_B)_i \in \{\mathscr{C}(u_A)_i, \mathscr{C}(v_A)_i\}$
- Message length: $\log_2 q$
- $Soundness: 1 − O(∆(𝔅)) ≈ O(1/\sqrt{q})$ (for AG codes)

 $\odot \text{ Construct } \tau: V \to \{0,1\}^{q \cdot c \cdot \log n}$

- $\odot \text{ Construct } \tau: V \to \{0,1\}^{q \cdot c \cdot \log n}$
- ◎ Fix $i \in [c \cdot \log n]$.

- \odot Construct $\tau: V \to \{0, 1\}^{q \cdot c \cdot \log n}$
- ◎ Fix $i \in [c \cdot \log n]$. For any $t \in [q]$:

$$\tau(v)_{i,t} = 1 \Longleftrightarrow \mathscr{C}(v)_i = t$$

- \odot Construct $\tau: V \to \{0, 1\}^{q \cdot c \cdot \log n}$
- ◎ Fix $i \in [c \cdot \log n]$. For any $t \in [q]$:

$$\tau(v)_{i,t} = 1 \Longleftrightarrow \mathscr{C}(v)_i = t$$

 $\odot \ \mathcal{S} = \{\tau(v) \mid v \in V\}$

- $\odot \text{ Construct } \tau: V \to \{0,1\}^{q \cdot c \cdot \log n}$
- ◎ Fix $i \in [c \cdot \log n]$. For any $t \in [q]$:

$$\tau(v)_{i,t} = 1 \Longleftrightarrow \mathscr{C}(v)_i = t$$

- $\odot \ \mathbf{S} = \{\tau(v) \mid v \in V\}$
- $\odot X = \{\tau(u) \lor \tau(v) \mid (u, v) \in E\}$

◎
$$V' := \{v_1, \ldots, v_k\} \subseteq V$$
 be a vertex cover of *G*

◎
$$V' := \{v_1, \ldots, v_k\} \subseteq V$$
 be a vertex cover of *G*

 \odot Build $\sigma: X \to C \subseteq S$

◎
$$V' := \{v_1, \ldots, v_k\} \subseteq V$$
 be a vertex cover of *G*

 $\ \ \, \ \, \hbox{Build} \ \ \sigma:X\to C\subseteq \mathcal{S}$

$$\sigma(x_{u,v}) = \begin{cases} \tau(u) \text{ if } u \in V' \\ \tau(v) \text{ otherwise.} \end{cases}$$

◎
$$V' := \{v_1, \ldots, v_k\} \subseteq V$$
 be a vertex cover of *G*

 \bigcirc Build $\sigma: X \to C \subseteq \mathcal{S}$

$$\sigma(x_{u,v}) = \begin{cases} \tau(u) \text{ if } u \in V' \\ \tau(v) \text{ otherwise.} \end{cases}$$

◎ Fix $x_{u,v} \in X$ and $i \in [c \cdot \log n]$

Distance between $x_{u,v}$ and $\sigma(x_{u,v})$ on block *i* is 1

◎
$$V' := \{v_1, \ldots, v_k\} \subseteq V$$
 be a vertex cover of *G*

 \odot Build $\sigma: X \to C \subseteq S$

$$\sigma(x_{u,v}) = \begin{cases} \tau(u) \text{ if } u \in V' \\ \tau(v) \text{ otherwise.} \end{cases}$$

◎ Fix $x_{u,v} \in X$ and $i \in [c \cdot \log n]$

Distance between $x_{u,v}$ and $\sigma(x_{u,v})$ on block *i* is 1

◎ *k*-means objective is:

$$\sum_{x \in X} \|(x - \sigma(x))\|_0^2 = (c \cdot \log n)^2 \cdot |X|$$

𝔅 *σ* : *X* → *C* ⊆ *𝔅* is some classification

 $\odot \sigma : X \to C \subseteq \mathcal{S}$ is some classification

◎ Build $V' \subseteq V$ of size *k*:

 $v \in V' \iff \tau(v) \in C$

 $\odot \sigma : X \to C \subseteq \mathcal{S}$ is some classification

```
● Build V' \subseteq V of size k:
```

$$v \in V' \iff \tau(v) \in C$$

◎ $E' \subseteq E$, such that V' does not cover any $e \in E'$

 $\odot \sigma : X \to C \subseteq \mathcal{S}$ is some classification

● Build $V' \subseteq V$ of size k:

$$v \in V' \iff \tau(v) \in C$$

◎ $E' \subseteq E$, such that V' does not cover any $e \in E'$

◎ Fix $x_{u,v} \in X_{E'}$ and $i \in [c \cdot \log n]$

Distance between $x_{u,v}$ and $\sigma(x_{u,v})$ on block *i* is mostly 3

 $\odot \sigma : X \to C \subseteq \mathcal{S}$ is some classification

◎ Build $V' \subseteq V$ of size *k*:

$$v \in V' \iff \tau(v) \in C$$

◎ $E' \subseteq E$, such that V' does not cover any $e \in E'$

◎ Fix
$$x_{u,v} \in X_{E'}$$
 and $i \in [c \cdot \log n]$

Distance between $x_{u,v}$ and $\sigma(x_{u,v})$ on block *i* is mostly 3

◎ *k*-means objective is:

$$\sum_{x \in X} \|(x - \sigma(x))\|_0^2 = (c \cdot \log n)^2 \cdot |X \setminus X_{E'}| + 9 \cdot (c \cdot \log n)^2 \cdot |X_{E'}|$$

Theorem (Cohen-Addad–K'19)

Given input $X, S \subseteq \{0, 1\}^{O(\log n)}$. It is UG-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\sum_{x \in X} ||(x - \sigma^*(x))||_0^2 \le n'$, NO: For all (C, σ) we have $\sum_{x \in X} ||(x - \sigma(x))||_0^2 \ge 1.56 \cdot n'$, where $n' = O(n(\log n)^2)$.

k-means in Hamming metric: Continuous Case

Theorem (Cohen-Addad–K'19)

Given input $X \subseteq \{0, 1\}^{O(\log n)}$. It is UG-hard to distinguish:

k-means in Hamming metric: Continuous Case

Theorem (Cohen-Addad–K'19)

Given input $X \subseteq \{0, 1\}^{O(\log n)}$. It is UG-hard to distinguish:

YES: There exists (C^*, σ^*) such that $\sum_{x \in X} ||(x - \sigma^*(x))||_0^2 \le n'$,

Theorem (Cohen-Addad–K'19)

Given input $X \subseteq \{0, 1\}^{O(\log n)}$. It is UG-hard to distinguish: YES: There exists (C^*, σ^*) such that $\sum_{x \in X} ||(x - \sigma^*(x))|_0^2 \le n'$, NO: For all (C, σ) we have $\sum_{x \in X} ||(x - \sigma(x))|_0^2 \ge 1.21 \cdot n'$, where $n' = O(n(\log n)^2)$.

$$\odot \mathbf{X} = \{\tau(u) \lor \tau(v) \mid (u, v) \in E\}$$

$$\odot \mathbf{X} = \{ \tau(u) \lor \tau(v) \mid (u, v) \in E \}$$

Completeness: Choose centers corresponding to vertices

- $\odot \mathbf{X} = \{ \tau(u) \lor \tau(v) \mid (u, v) \in E \}$
- Completeness: Choose centers corresponding to vertices

- $\odot X = \{\tau(u) \lor \tau(v) \mid (u, v) \in E\}$
- Completeness: Choose centers corresponding to vertices
- ◎ Soundness: σ : $X \to C \subseteq \{0, 1\}^{q \cdot c \cdot \log n}$ is some classification
- ◎ In opt. solution: $\|\sigma(x_{u,v})\|_B\|_0 \le 3$ on every block *B*

- $\odot \mathbf{X} = \{ \tau(u) \lor \tau(v) \mid (u, v) \in E \}$
- Completeness: Choose centers corresponding to vertices
- Soundness: σ : X → C ⊆ {0, 1}^{*q*·c·log n} is some classification
- ◎ In opt. solution: $\|\sigma(x_{u,v})\|_B\|_0 \le 3$ on every block *B*
 - Mostly 3 or $2 \Rightarrow$ cluster size is small

- $\odot \mathbf{X} = \{ \tau(u) \lor \tau(v) \mid (u, v) \in E \}$
- Completeness: Choose centers corresponding to vertices
- ◎ In opt. solution: $\|\sigma(x_{u,v})\|_B\|_0 \le 3$ on every block *B*
 - Mostly 3 or $2 \Rightarrow$ cluster size is small
 - Mostly $o \Rightarrow pay cost 4 per block$

- $\odot \mathbf{X} = \{ \tau(u) \lor \tau(v) \mid (u, v) \in E \}$
- Completeness: Choose centers corresponding to vertices
- Soundness: σ : X → C ⊆ {0, 1}^{*q*·c·log n} is some classification
- ◎ In opt. solution: $\|\sigma(x_{u,v})\|_B\|_0 \le 3$ on every block *B*
 - Mostly 3 or $2 \Rightarrow$ cluster size is small
 - Mostly $o \Rightarrow pay cost 4 per block$
 - Mostly $1 \Rightarrow$ decode vertex

Discrete Version

	k-means	k-median
ℓ_1 -metric	1.56	1.14
ℓ_2 -metric	1.17	1.06
ℓ_{∞} -metric	3.94	1.74

Continuous Version

k-means in ℓ_2 -metric ≈ 1.07 *k*-median in ℓ_1 -metric ≈ 1.07

Gap Number of ℓ_p -metric

Largest $\alpha > 1$ for which we can realize $V \cup E$ of K_n such that

 $||u - e||_p = 1$ if $u \in e$ and $||u - e||_p \ge \alpha$ if $u \notin e$

Gap Number of ℓ_p -metric

Largest $\alpha > 1$ for which we can realize $V \cup E$ of K_n such that

 $||u - e||_p = 1$ if $u \in e$ and $||u - e||_p \ge \alpha$ if $u \notin e$

Replace each block by the embedding realizing gap number

 $\bigcirc \ell_0/\ell_1$ -metric = 3

- $\odot \ell_0 / \ell_1$ -metric = 3
- \odot ℓ_2 -metric > 1.85

- $\odot \ell_0 / \ell_1$ -metric = 3
- \odot ℓ_2 -metric > 1.85
- \odot ℓ_{∞} -metric = 3

Discrete Version

	k-means	k-median
ℓ_1 -metric	1.56	1.14
ℓ_2 -metric	1.17	1.06
ℓ_{∞} -metric	3.94	1.74

Continuous Version

k-means in ℓ_2 -metric ≈ 1.07 *k*-median in ℓ_1 -metric ≈ 1.07

Euclidean k-means: Continuous Case

k-means cost is sum of all pairwise intra-cluster squared distances

Euclidean k-means: Continuous Case

- *k*-means cost is sum of all pairwise intra-cluster squared distances
- Look at induced subgraph of each cluster

Euclidean k-means: Continuous Case

- *k*-means cost is sum of all pairwise intra-cluster squared distances
- Sook at induced subgraph of each cluster
 - Adjacent edges squared distance is 2

Euclidean k-means: Continuous Case

- *k*-means cost is sum of all pairwise intra-cluster squared distances
- Look at induced subgraph of each cluster
 - Adjacent edges squared distance is 2
 - Non-adjacent edges squared distance is 4

Euclidean k-means: Continuous Case

- *k*-means cost is sum of all pairwise intra-cluster squared distances
- Look at induced subgraph of each cluster
 - Adjacent edges squared distance is 2
 - Non-adjacent edges squared distance is 4
 - Argue that # of edges in cluster \gg max degree of cluster

Discrete Version

	k-means	k-median
ℓ_1 -metric	1.56	1.14
ℓ_2 -metric	1.17	1.06
ℓ_{∞} -metric	3.94	1.74

Continuous Version

k-means in ℓ_2 -metric \approx 1.07 *k*-median in ℓ_1 -metric \approx 1.07

Stronger Inapproximability in ℓ_{∞} -metric

Two ingredients:

Stronger Inapproximability in ℓ_{∞} -metric

Two ingredients:

Theorem (Essentially Feige'98)

For every $\delta > 0$ there is some $h \in \mathbb{N}$ such that deciding an instance of $(1 - \frac{1}{e} + \varepsilon)$ -hypergraph vertex coverage problem on *h*-uniform hypergraphs is NP-hard.

Stronger Inapproximability in ℓ_{∞} -metric

Two ingredients:

Theorem (Essentially Feige'98)

For every $\delta > 0$ there is some $h \in \mathbb{N}$ such that deciding an instance of $(1 - \frac{1}{e} + \varepsilon)$ -hypergraph vertex coverage problem on *h*-uniform hypergraphs is NP-hard.

Gap hypergraph number in ℓ_{∞} -metric is 3

Improved Inapproximability of

- Improved Inapproximability of
- ◎ *k*-means and *k*-median

- Improved Inapproximability of
- ◎ *k*-means and *k*-median
- ◎ In ℓ_p -metrics

- Improved Inapproximability of
- ◎ *k*-means and *k*-median
- \odot In ℓ_p -metrics
- Using Transcript of Membership Protocol

- Improved Inapproximability of
- ◎ *k*-means and *k*-median
- \odot In ℓ_p -metrics
- Using Transcript of Membership Protocol
- And Geometric Realization of Complete Graphs

- Improved Inapproximability of
- ◎ *k*-means and *k*-median
- \odot In ℓ_p -metrics
- Using Transcript of Membership Protocol
- And Geometric Realization of Complete Graphs
 And Geometric Realization
 And Geometric Realiza
- And Complete Hypergraphs

Can we **embed** vertices and hyperedges of *h*-uniform complete hypergraph in Hamming metric with gap number <u>3</u>? Can we **embed** vertices and hyperedges of *h*-uniform complete hypergraph in Hamming metric with gap number <u>3</u>?

• Current Reduction gives gap number $1 + \frac{2}{(h-1)}$

Can we **embed** vertices and hyperedges of *h*-uniform complete hypergraph in Hamming metric with gap number <u>3</u>?

- Current Reduction gives gap number $1 + \frac{2}{(h-1)}$
- Dimension of embedding doesn't matter for ℓ_2 -metric
 - Johnson-Lindenstrauss dimension reduction

Can we embed vertices and edges of K_n in Euclidean metric with gap number 2?

Can we embed vertices and edges of K_n in Euclidean metric with gap number 2?

• It holds for n = 3

Can we embed vertices and edges of K_n in Euclidean metric with gap number 2?

- ◎ It holds for n = 3
- Can we prove an upper bound of 2?

Can we go beyond Triangle Inequality Barrier?

Can we go beyond Triangle Inequality Barrier?

- Can we show >1 + ⁸/_e inapproximability of *k*-means in any metric?
- Can we show >1 + 2/e inapproximability of k-median in any metric?

THANK YOU!