Inapproximability of Clustering in ℓ_{p}-metrics

Karthik C. S.
(Weizmann Institute of Science)

Joint work with

Vincent Cohen-Addad
(Sorbonne Université)

What is Clustering?

What is Clustering?

What is Clustering?

What is Clustering?

Task of Classifying Input Data

What is Clustering?

© (Γ, Δ) is a metric space

What is Clustering?

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma$

What is Clustering?

© (Γ, Δ) is a metric space
๑ Input: $X \subseteq \Gamma$
© Output: A classification (C, σ):

What is Clustering?

© (Γ, Δ) is a metric space
๑ Input: $X \subseteq \Gamma$
© Output: A classification (C, σ):

$$
\text { - } C \subseteq \Gamma \text { and }|C|=k
$$

What is Clustering?

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma$
© Output: A classification (C, σ) :

$$
\begin{aligned}
& \circ C \subseteq \Gamma \text { and }|C|=k \\
& \circ \sigma: X \rightarrow C
\end{aligned}
$$

What is Clustering?

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma$
© Output: A classification (C, σ) :

- $C \subseteq \Gamma$ and $|C|=k$
- $\sigma: X \rightarrow C$
- σ is good

What is Clustering?

Continuous Version

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma$
© Output: A classification (C, σ) :

$$
\begin{aligned}
& \circ C \subseteq \Gamma \text { and }|C|=k \\
& \circ \sigma: X \rightarrow C \\
& \circ \sigma \text { is good }
\end{aligned}
$$

What is Clustering?

Discrete
 Gontinturs Version

(0) (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma$
© Output: A classification (C, σ) :

- $C \subseteq \Gamma$ and $|C|=k$
- $\sigma: X \rightarrow C$
- σ is good

What is Clustering?

Discrete
 Gontintuts Version

(0) (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma$ and $\delta \subseteq \Gamma$
© Output: A classification (C, σ) :

- $C \subseteq \mathbf{X}$ and $|C|=k$
- $\sigma: X \rightarrow C$
- σ is good

What is Good Classification?

(0) k-means, k-median, k-center, min-sum, etc.

What is Good Classification?

© k-means, k-median, k-center, min-sum, etc.
© k-median value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))
$$

What is Good Classification?

© k-means, k-median, k-center, min-sum, etc.
© k-median value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))
$$

© k-means value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))^{2}
$$

What is Good Classification?

© k-means, k-median, k-center, min-sum, etc.
© k-median value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))
$$

© k-means value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))^{2}
$$

Clustering Problem for objective Λ

What is Good Classification?

© k-means, k-median, k-center, min-sum, etc.
© k-median value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))
$$

© k-means value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))^{2}
$$

Clustering Problem for objective Λ
Yes: There is classification $\left(C^{*}, \sigma^{*}\right)$, such that $\Lambda\left(X, \sigma^{*}\right) \leq \beta$

What is Good Classification?

© k-means, k-median, k-center, min-sum, etc.
© k-median value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))
$$

© k-means value of (C, σ)

$$
\sum_{x \in X} \Delta(x, \sigma(x))^{2}
$$

Clustering Problem for objective Λ
Yes: There is classification $\left(C^{*}, \sigma^{*}\right)$, such that $\Lambda\left(X, \sigma^{*}\right) \leq \beta$ No: For all classification (C, σ), we have $\Lambda(X, \sigma)>(1+\delta) \cdot \beta$

Exact Computation

© NP-hard when $k=2$ (Dasgupta'o7)

Exact Computation

© NP-hard when $k=2$ (Dasgupta'o7)
© NP-hard in Euclidean plane
(Megiddo-Supowit'84,
Mahajan-Nimbhorkar-Varadarajan'12)

Exact Computation

© NP-hard when $k=2$ (Dasgupta'o7)
© NP-hard in Euclidean plane
(Megiddo-Supowit'84,
Mahajan-Nimbhorkar-Varadarajan'12)
© W[2]-hard in general metric (Guha-Khuller'99)

Approximation Algorithms

© General metric: k-means ≥ 9
(Ahmadian-Norouzi-Fard-Svensson-Ward'17)

Approximation Algorithms

© General metric: k-means ≥ 9
(Ahmadian-Norouzi-Fard-Svensson-Ward'17)
© General metric: k-median ≥ 2.67 (Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)

Approximation Algorithms

© General metric: k-means ≥ 9
(Ahmadian-Norouzi-Fard-Svensson-Ward'17)
© General metric: k-median ≥ 2.67
(Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)
© Euclidean metric k-means:

Approximation Algorithms

© General metric: k-means ≥ 9
(Ahmadian-Norouzi-Fard-Svensson-Ward'17)
© General metric: k-median ≥ 2.67
(Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)
© Euclidean metric k-means:

- Poly time approximation ≈ 6.357
(Ahmadian-Norouzi-Fard-Svensson-Ward'17)

Approximation Algorithms

© General metric: k-means ≥ 9
(Ahmadian-Norouzi-Fard-Svensson-Ward'17)
© General metric: k-median ≥ 2.67
(Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)
© Euclidean metric k-means:

- Poly time approximation ≈ 6.357
(Ahmadian-Norouzi-Fard-Svensson-Ward'17)
- Fixed Dimension: PTAS (Cohen-Addad'18)

Approximation Algorithms

© General metric: k-means ≥ 9
(Ahmadian-Norouzi-Fard-Svensson-Ward'17)
© General metric: k-median ≥ 2.67
(Byrka-Pensyl-Rybicki-Srinivasan-Trinh'17)
© Euclidean metric k-means:

- Poly time approximation ≈ 6.357
(Ahmadian-Norouzi-Fard-Svensson-Ward'17)
- Fixed Dimension: PTAS (Cohen-Addad'18)
- Fixed k : PTAS (Kumar-Sabharwal-Sen'10)

Hardness of Approximation

Discrete Version:

Hardness of Approximation

Discrete Version:
© General metric: k-means $\approx 3.94, k$-median ≈ 1.74 (Guha-Khuller'99)

Hardness of Approximation

Discrete Version:

© General metric: k-means $\approx 3.94, k$-median ≈ 1.74 (Guha-Khuller'99)
(0) ℓ_{2}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$ (Trevisan'oo)
© ℓ_{1}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$ (Trevisan'oo)

Hardness of Approximation

Discrete Version:

© General metric: k-means ≈ 3.94, k-median ≈ 1.74 (Guha-Khuller'99)
© ℓ_{2}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$ (Trevisan'oo)
© ℓ_{1}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$ (Trevisan'oo)
© ℓ_{∞}-metric: k-means $\ll 1.01$, k-median $\ll 1.01$
(Guruswami-Indyk'03)

Hardness of Approximation

Discrete Version:

© General metric: k-means $\approx 3.94, k$-median ≈ 1.74 (Guha-Khuller'99)
© ℓ_{2}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$ (Trevisan'oo)
© ℓ_{1}-metric: k-means $\ll 1.01, k$-median $\ll 1.01$ (Trevisan'oo)
© ℓ_{∞}-metric: k-means $\ll 1.01$, k-median $\ll 1.01$ (Guruswami-Indyk'03)

Continuous Version:

k-means in Euclidean metric <1.0013
(Lee-Schmidt-Wright'17)

Hardness of Approximation

Discrete Version:

© General metric: k-means $\approx 3.94, k$-median ≈ 1.74 (Guha-Khuller'99)
© ℓ_{2}-metric: k-means $\ll 1.17$. k, k-median $\ll \frac{1.06}{1.04}$ (Trevisan'oo)
(ℓ_{1}-metric: k-means $\ll \frac{1.56}{1.04}$, k-median $\ll 1.14$ (Trevisan'oo)
© ℓ_{∞}-metric: k-means $\ll \frac{3.94}{1.01} k$-median $\ll 1.74$ (Guruswami-Indyk'03)

Continuous Version:

$$
\begin{gathered}
k \text {-means in Euclidean metric }<1.0013 \\
(\text { Lee-Schmidt-Wright'17) }
\end{gathered}
$$

Our Results (Cohen-Addad-K'19)

Discrete Version

	k-means	k-median
ℓ_{1}-metric	1.56	1.14
ℓ_{2}-metric	1.17	1.06
ℓ_{∞}-metric	3.94	1.74

Our Results (Cohen-Addad-K'19)

Discrete Version

	k-means	k-median
ℓ_{1}-metric	1.56	1.14
ℓ_{2}-metric	1.17	1.06
ℓ_{∞}-metric	3.94	1.74

Continuous Version

k-means in ℓ_{2}-metric ≈ 1.07
k-median in ℓ_{1}-metric ≈ 1.07

Our Results (Cohen-Addad-K'19)

Discrete Version

	k-means	k-median
ℓ_{1}-metric	1.56	1.14
ℓ_{2}-metric	1.17	1.06
ℓ_{∞}-metric	3.94	1.74

Continuous Version

k-means in ℓ_{2}-metric ≈ 1.07
k-median in ℓ_{1}-metric ≈ 1.07

A New Embedding Framework to potentially get Strong (tight?) Inapproximability results!

Warm up: General Metrics

Warm up: General Metrics

Max Coverage:
© Input: Universe and Collection of Subsets (U, S, k)

Warm up: General Metrics

Max Coverage:
© Input: Universe and Collection of Subsets (U, \mathcal{S}, k)
© Objective: Max Fraction of U covered by k subsets in δ

Warm up: General Metrics

Max Coverage:
© Input: Universe and Collection of Subsets (U, \mathcal{S}, k)
© Objective: Max Fraction of U covered by k subsets in δ

Theorem (Feige'98)
Fix $\varepsilon>0$. It is NP-hard to distinguish:

Warm up: General Metrics

Max Coverage:
© Input: Universe and Collection of Subsets (U, \mathcal{S}, k)
© Objective: Max Fraction of U covered by k subsets in δ

Theorem (Feige'98)
Fix $\varepsilon>0$. It is NP-hard to distinguish:
YES: Max Coverage is 1

Warm up: General Metrics

Max Coverage:
© Input: Universe and Collection of Subsets (U, \mathcal{S}, k)
© Objective: Max Fraction of U covered by k subsets in δ

Theorem (Feige'98)

Fix $\varepsilon>0$. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most $1-1 / e+\varepsilon$

Warm up: General Metrics

Theorem (Feige'98)

Fix $\varepsilon>0$. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most $1-1 / e+\varepsilon$

Warm up: General Metrics

Theorem (Feige'98)

Fix $\varepsilon>0$. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most $1-1 / e+\varepsilon$

Theorem (Guha-Khuller'99)
Fix $\varepsilon>0$. Given input X. It is NP-hard to distinguish:

Warm up: General Metrics

Theorem (Feige'98)

Fix $\varepsilon>0$. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most $1-1 / e+\varepsilon$

Theorem (Guha-Khuller'99)

Fix $\varepsilon>0$. Given input X. It is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \Delta\left(x, \sigma^{*}(x)\right)^{2} \leq|X|$

Warm up: General Metrics

Theorem (Feige'98)

Fix $\varepsilon>0$. It is NP-hard to distinguish:
YES: Max Coverage is 1
NO: Max Coverage is at most $1-1 / e+\varepsilon$

Theorem (Guha-Khuller'99)
Fix $\varepsilon>0$. Given input X. It is NP-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \Delta\left(x, \sigma^{*}(x)\right)^{2} \leq|X|$
NO: For all (C, σ) we have $\sum_{x \in X} \Delta(x, \sigma(x))^{2} \geq(1+8 / e-\varepsilon) \cdot|X|$

k-means in Hamming metric

Theorem (Cohen-Addad-K'19)
Given input $X, \mathcal{S} \subseteq\{0,1\}^{O(\log n)}$. It is UG-hard to distinguish:

k-means in Hamming metric

Theorem (Cohen-Addad-K'19)
Given input $X, \mathcal{S} \subseteq\{0,1\}^{O(\log n)}$. It is UG-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \|\left(x-\sigma^{*}(x) \|_{0}^{2} \leq n^{\prime}\right.$,

Theorem (Cohen-Addad-K'19)
Given input $X, \mathcal{S} \subseteq\{0,1\}^{O(\log n)}$. It is UG-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \|\left(x-\sigma^{*}(x) \|_{0}^{2} \leq n^{\prime}\right.$,
NO: For all (C, σ) we have $\sum_{x \in X} \|\left(x-\sigma(x) \|_{0}^{2} \geq 1.56 \cdot n^{\prime}\right.$, where $n^{\prime}=O\left(n(\log n)^{2}\right)$.

Vertex Coverage

Vertex Coverage:
© Input: Graph (G, k)

Vertex Coverage

Vertex Coverage:
© Input: Graph (G, k)
© Objective: Max Fraction of Edges covered by k Vertices

Vertex Coverage

Vertex Coverage:
© Input: Graph (G, k)
© Objective: Max Fraction of Edges covered by k Vertices

Theorem (Austrin-Khot-Safra'11; Austrin-Stanković'19)
Fix $\varepsilon>0$. It is UG-hard to distinguish:

Vertex Coverage

Vertex Coverage:
© Input: Graph (G, k)
© Objective: Max Fraction of Edges covered by k Vertices

Theorem (Austrin-Khot-Safra'11; Austrin-Stanković'19)
Fix $\varepsilon>0$. It is UG-hard to distinguish:
YES: Vertex Coverage is 1

Vertex Coverage

Vertex Coverage:
© Input: Graph (G, k)
© Objective: Max Fraction of Edges covered by k Vertices

Theorem (Austrin-Khot-Safra'11; Austrin-Stanković'19)
Fix $\varepsilon>0$. It is UG-hard to distinguish:
YES: Vertex Coverage is 1
NO: Vertex Coverage is at most $0.9292-\varepsilon$

Vertex Coverage

Vertex Coverage:
© Input: Graph (G, k)
© Objective: Max Fraction of Edges covered by k Vertices

Theorem (Austrin-Khot-Safra'11; Austrin-Stankovic'19)
Fix $\varepsilon>0$. It is UG-hard to distinguish:
YES: Vertex Coverage is 1
NO: Vertex Coverage is at most $0.9292-\varepsilon$

Edges \rightarrow Data Points
Vertices \rightarrow Candidate Centers

Vertex/Edge Game

GOAL

Determine if $v_{B} \in\left\{u_{A}, v_{A}\right\}$

Vertex/Edge Game: Protocols

© Deterministic Protocol:

- Message length: $O(\log n)$ bits
- Completeness: 1, Soundness: o

Vertex/Edge Game: Protocols

© Deterministic Protocol:

- Message length: $O(\log n)$ bits
- Completeness: 1, Soundness: o
© Randomized Protocol:
- Message length: $O_{\varepsilon}(1)$ bits

Vertex/Edge Game: Protocols

© Deterministic Protocol:

- Message length: $O(\log n)$ bits
- Completeness: 1, Soundness: o
© Randomized Protocol:
- Message length: $O_{\varepsilon}(1)$ bits
- Completeness: 1 , Soundness: ε

Vertex/Edge Game: Randomized Protocol

(Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$

Vertex/Edge Game: Randomized Protocol

(Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$
© Alice and Bob pick randomly $i \in[c \cdot \log n]$

Vertex/Edge Game: Randomized Protocol

© Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$
© Alice and Bob pick randomly $i \in[c \cdot \log n]$
© Bob sends to Alice $\mathscr{C}\left(v_{B}\right)_{i}$

Vertex/Edge Game: Randomized Protocol

© Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$
© Alice and Bob pick randomly $i \in[c \cdot \log n]$
© Bob sends to Alice $\mathscr{C}\left(v_{B}\right)_{i}$
© Alice checks if $\mathscr{C}\left(v_{B}\right)_{i} \in\left\{\mathscr{C}\left(u_{A}\right)_{i}, \mathscr{C}\left(v_{A}\right)_{i}\right\}$

Vertex/Edge Game: Randomized Protocol

© Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$
© Alice and Bob pick randomly $i \in[c \cdot \log n]$
© Bob sends to Alice $\mathscr{C}\left(v_{B}\right)_{i}$
© Alice checks if $\mathscr{C}\left(v_{B}\right)_{i} \in\left\{\mathscr{C}\left(u_{A}\right)_{i}, \mathscr{C}\left(v_{A}\right)_{i}\right\}$
© Message length: $\log _{2} q$

Vertex/Edge Game: Randomized Protocol

© Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$
© Alice and Bob pick randomly $i \in[c \cdot \log n]$
© Bob sends to Alice $\mathscr{C}\left(v_{B}\right)_{i}$
© Alice checks if $\mathscr{C}\left(v_{B}\right)_{i} \in\left\{\mathscr{C}\left(u_{A}\right)_{i}, \mathscr{C}\left(v_{A}\right)_{i}\right\}$
© Message length: $\log _{2} q$
© Soundness: $1-O(\Delta(\mathscr{C}))$

Vertex/Edge Game: Randomized Protocol

© Let $\mathscr{C}: \mathbb{F}_{q}^{\log n} \rightarrow \mathbb{F}_{q}^{c \cdot \log n}$
© Alice and Bob pick randomly $i \in[c \cdot \log n]$
© Bob sends to Alice $\mathscr{C}\left(v_{B}\right)_{i}$
© Alice checks if $\mathscr{C}\left(v_{B}\right)_{i} \in\left\{\mathscr{C}\left(u_{A}\right)_{i}, \mathscr{C}\left(v_{A}\right)_{i}\right\}$
© Message length: $\log _{2} q$
© Soundness: $1-O(\Delta(\mathscr{C})) \approx O(1 / \sqrt{q})$ (for AG codes)

Embedding Transcript into Hamming metric

© Construct $\tau: V \rightarrow\{0,1\}^{q \cdot c \cdot \log n}$

Embedding Transcript into Hamming metric

© Construct $\tau: V \rightarrow\{0,1\}^{q \cdot c \cdot \log n}$
© Fix $i \in[c \cdot \log n]$.

Embedding Transcript into Hamming metric

© Construct $\tau: V \rightarrow\{0,1\}^{q \cdot c \cdot \log n}$
© Fix $i \in[c \cdot \log n]$. For any $t \in[q]$:

$$
\tau(v)_{i, t}=1 \Longleftrightarrow \mathscr{C}(v)_{i}=t
$$

Embedding Transcript into Hamming metric

(0) Construct $\tau: V \rightarrow\{0,1\}^{q \cdot \cdot \cdot \log n}$
(o Fix $i \in[c \cdot \log n]$. For any $t \in[q]$:

$$
\tau(v)_{i, t}=1 \Longleftrightarrow \mathscr{C}(v)_{i}=t
$$

© $\mathcal{S}=\{\tau(v) \mid v \in V\}$

Embedding Transcript into Hamming metric

© Construct $\tau: V \rightarrow\{0,1\}^{q \cdot c \cdot \log n}$
© Fix $i \in[c \cdot \log n]$. For any $t \in[q]$:

$$
\tau(v)_{i, t}=1 \Longleftrightarrow \mathscr{C}(v)_{i}=t
$$

© $\mathcal{S}=\{\tau(v) \mid v \in V\}$
© $X=\{\tau(u) \vee \tau(v) \mid(u, v) \in E\}$

Completeness of Reduction

(○ $V^{\prime}:=\left\{v_{1}, \ldots, v_{k}\right\} \subseteq V$ be a vertex cover of G

Completeness of Reduction

(○ $V^{\prime}:=\left\{v_{1}, \ldots, v_{k}\right\} \subseteq V$ be a vertex cover of G
© Build $\sigma: X \rightarrow C \subseteq \delta$

Completeness of Reduction

© $V^{\prime}:=\left\{v_{1}, \ldots, v_{k}\right\} \subseteq V$ be a vertex cover of G
© Build $\sigma: X \rightarrow C \subseteq \delta$

$$
\sigma\left(x_{u, v}\right)=\left\{\begin{array}{l}
\tau(u) \text { if } u \in V^{\prime} \\
\tau(v) \text { otherwise } .
\end{array}\right.
$$

Completeness of Reduction

© $V^{\prime}:=\left\{v_{1}, \ldots, v_{k}\right\} \subseteq V$ be a vertex cover of G
© Build $\sigma: X \rightarrow C \subseteq \delta$

$$
\sigma\left(x_{u, v}\right)=\left\{\begin{array}{l}
\tau(u) \text { if } u \in V^{\prime} \\
\tau(v) \text { otherwise } .
\end{array}\right.
$$

© Fix $x_{u, v} \in X$ and $i \in[c \cdot \log n]$

Distance between $x_{u, v}$ and $\sigma\left(x_{u, v}\right)$ on block i is 1

Completeness of Reduction

© $V^{\prime}:=\left\{v_{1}, \ldots, v_{k}\right\} \subseteq V$ be a vertex cover of G
© Build $\sigma: X \rightarrow C \subseteq \delta$

$$
\sigma\left(x_{u, v}\right)=\left\{\begin{array}{l}
\tau(u) \text { if } u \in V^{\prime} \\
\tau(v) \text { otherwise. }
\end{array}\right.
$$

(0) Fix $x_{u, v} \in X$ and $i \in[c \cdot \log n]$

Distance between $x_{u, v}$ and $\sigma\left(x_{u, v}\right)$ on block i is 1
© k-means objective is:

$$
\sum_{x \in X} \|\left(x-\sigma(x) \|_{0}^{2}=(c \cdot \log n)^{2} \cdot|X|\right.
$$

Soundness of Reduction

© $\sigma: X \rightarrow C \subseteq \delta$ is some classification

Soundness of Reduction

© $\sigma: X \rightarrow C \subseteq \delta$ is some classification
© Build $V^{\prime} \subseteq V$ of size k :

$$
v \in V^{\prime} \Longleftrightarrow \tau(v) \in C
$$

Soundness of Reduction

© $\sigma: X \rightarrow C \subseteq \mathcal{S}$ is some classification
© Build $V^{\prime} \subseteq V$ of size k :

$$
v \in V^{\prime} \Longleftrightarrow \tau(v) \in C
$$

© $E^{\prime} \subseteq E$, such that V^{\prime} does not cover any $e \in E^{\prime}$

Soundness of Reduction

© $\sigma: X \rightarrow C \subseteq \delta$ is some classification
© Build $V^{\prime} \subseteq V$ of size k :

$$
v \in V^{\prime} \Longleftrightarrow \tau(v) \in C
$$

© $E^{\prime} \subseteq E$, such that V^{\prime} does not cover any $e \in E^{\prime}$
() Fix $x_{u, v} \in X_{E^{\prime}}$ and $i \in[c \cdot \log n]$

Distance between $x_{u, v}$ and $\sigma\left(x_{u, v}\right)$ on block i is mostly 3
© $\sigma: X \rightarrow C \subseteq \delta$ is some classification
© Build $V^{\prime} \subseteq V$ of size k :

$$
v \in V^{\prime} \Longleftrightarrow \tau(v) \in C
$$

© $E^{\prime} \subseteq E$, such that V^{\prime} does not cover any $e \in E^{\prime}$
(0) Fix $x_{u, v} \in X_{E^{\prime}}$ and $i \in[c \cdot \log n]$

Distance between $x_{u, v}$ and $\sigma\left(x_{u, v}\right)$ on block i is mostly 3
© k-means objective is:

$$
\sum_{x \in X} \|\left(x-\sigma(x) \|_{0}^{2}=(c \cdot \log n)^{2} \cdot\left|X \backslash X_{E^{\prime}}\right|+9 \cdot(c \cdot \log n)^{2} \cdot\left|X_{E^{\prime}}\right|\right.
$$

k-means in Hamming metric

Theorem (Cohen-Addad-K'19)
Given input $X, \mathcal{S} \subseteq\{0,1\}^{O(\log n)}$. It is UG-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \|\left(x-\sigma^{*}(x) \|_{0}^{2} \leq n^{\prime}\right.$,
NO: For all (C, σ) we have $\sum_{x \in X} \|\left(x-\sigma(x) \|_{0}^{2} \geq 1.56 \cdot n^{\prime}\right.$, where $n^{\prime}=O\left(n(\log n)^{2}\right)$.

k-means in Hamming metric: Continuous Case

Theorem (Cohen-Addad-K'19)
Given input $X \subseteq\{0,1\}^{O(\log n)}$. It is UG-hard to distinguish:

k-means in Hamming metric: Continuous Case

Theorem (Cohen-Addad-K'19)
Given input $X \subseteq\{0,1\}^{O(\log n)}$. It is UG-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \|\left(x-\sigma^{*}(x) \|_{0}^{2} \leq n^{\prime}\right.$,

k-means in Hamming metric: Continuous Case

Theorem (Cohen-Addad-K'19)

Given input $X \subseteq\{0,1\}^{O(\log n)}$. It is UG-hard to distinguish:
YES: There exists $\left(C^{*}, \sigma^{*}\right)$ such that $\sum_{x \in X} \|\left(x-\sigma^{*}(x) \|_{0}^{2} \leq n^{\prime}\right.$,
NO: For all (C, σ) we have $\sum_{x \in X} \|\left(x-\sigma(x) \|_{0}^{2} \geq 1.21 \cdot n^{\prime}\right.$, where $n^{\prime}=O\left(n(\log n)^{2}\right)$.

Continuous Case: Analysis

$\odot X=\{\tau(u) \vee \tau(v) \mid(u, v) \in E\}$

Continuous Case: Analysis

© $X=\{\tau(u) \vee \tau(v) \mid(u, v) \in E\}$
© Completeness: Choose centers corresponding to vertices

Continuous Case: Analysis

© $X=\{\tau(u) \vee \tau(v) \mid(u, v) \in E\}$
© Completeness: Choose centers corresponding to vertices
© Soundness: $\sigma: X \rightarrow C \subseteq\{0,1\}^{q \cdot c \cdot \log n}$ is some classification

Continuous Case: Analysis

© $X=\{\tau(u) \vee \tau(v) \mid(u, v) \in E\}$
© Completeness: Choose centers corresponding to vertices
© Soundness: $\sigma: X \rightarrow C \subseteq\{0,1\}^{q \cdot c \cdot \log n}$ is some classification
© In opt. solution: $\left\|\left.\sigma\left(x_{u, v}\right)\right|_{B}\right\|_{0} \leq 3$ on every block B

Continuous Case: Analysis

© $X=\{\tau(u) \vee \tau(v) \mid(u, v) \in E\}$
© Completeness: Choose centers corresponding to vertices
© Soundness: $\sigma: X \rightarrow C \subseteq\{0,1\}^{q \cdot c \cdot \log n}$ is some classification
© In opt. solution: $\left\|\left.\sigma\left(x_{u, v}\right)\right|_{B}\right\|_{0} \leq 3$ on every block B

- Mostly 3 or $2 \Rightarrow$ cluster size is small

Continuous Case: Analysis

© $X=\{\tau(u) \vee \tau(v) \mid(u, v) \in E\}$
© Completeness: Choose centers corresponding to vertices
© Soundness: $\sigma: X \rightarrow C \subseteq\{0,1\}^{q \cdot c \cdot \log n}$ is some classification
© In opt. solution: $\left\|\left.\sigma\left(x_{u, v}\right)\right|_{B}\right\|_{0} \leq 3$ on every block B

- Mostly 3 or $2 \Rightarrow$ cluster size is small
- Mostly o \Rightarrow pay cost 4 per block

Continuous Case: Analysis

© $X=\{\tau(u) \vee \tau(v) \mid(u, v) \in E\}$
© Completeness: Choose centers corresponding to vertices
© Soundness: $\sigma: X \rightarrow C \subseteq\{0,1\}^{q \cdot c \cdot \log n}$ is some classification
© In opt. solution: $\left\|\left.\sigma\left(x_{u, v}\right)\right|_{B}\right\|_{0} \leq 3$ on every block B

- Mostly 3 or $2 \Rightarrow$ cluster size is small
- Mostly o \Rightarrow pay cost 4 per block
- Mostly $1 \Rightarrow$ decode vertex

Our Result

Discrete Version

	k-means	k-median
ℓ_{1}-metric	1.56	1.14
ℓ_{2}-metric	1.17	1.06
ℓ_{∞}-metric	3.94	1.74

Continuous Version

k-means in ℓ_{2}-metric ≈ 1.07
k-median in ℓ_{1}-metric ≈ 1.07

Other Metrics: More Embedding

Gap Number of ℓ_{p}-metric
Largest $\alpha>1$ for which we can realize $V \cup E$ of K_{n} such that

$$
\|u-e\|_{p}=1 \text { if } u \in e \text { and }\|u-e\|_{p} \geq \alpha \text { if } u \notin e
$$

Other Metrics: More Embedding

Gap Number of ℓ_{p}-metric
Largest $\alpha>1$ for which we can realize $V \cup E$ of K_{n} such that

$$
\|u-e\|_{p}=1 \text { if } u \in e \text { and }\|u-e\|_{p} \geq \alpha \text { if } u \notin e
$$

Replace each block by the embedding realizing gap number

Gap Number of ℓ_{p}-metrics

© ℓ_{0} / ℓ_{1}-metric $=3$

Gap Number of ℓ_{p}-metrics

(อ) ℓ_{0} / ℓ_{1}-metric $=3$
© ℓ_{2}-metric >1.85

Gap Number of ℓ_{p}-metrics

© ℓ_{0} / ℓ_{1}-metric $=3$
© ℓ_{2}-metric >1.85
(ℓ_{∞}-metric $=3$

Our Result

Discrete Version

	k-means	k-median
ℓ_{1}-metric	1.56	1.14
ℓ_{2}-metric	1.17	1.06
ℓ_{∞}-metric	3.94	1.74

Continuous Version

k-means in ℓ_{2}-metric ≈ 1.07
k-median in ℓ_{1}-metric ≈ 1.07

Euclidean k-means: Continuous Case

© k-means cost is sum of all pairwise intra-cluster squared distances

Euclidean k-means: Continuous Case

© k-means cost is sum of all pairwise intra-cluster squared distances
© Look at induced subgraph of each cluster

Euclidean k-means: Continuous Case

© k-means cost is sum of all pairwise intra-cluster squared distances
© Look at induced subgraph of each cluster

- Adjacent edges squared distance is 2

Euclidean k-means: Continuous Case

© k-means cost is sum of all pairwise intra-cluster squared distances
© Look at induced subgraph of each cluster

- Adjacent edges squared distance is 2
- Non-adjacent edges squared distance is 4

Euclidean k-means: Continuous Case

© k-means cost is sum of all pairwise intra-cluster squared distances
© Look at induced subgraph of each cluster

- Adjacent edges squared distance is 2
- Non-adjacent edges squared distance is 4
- Argue that \# of edges in cluster \gg max degree of cluster

Our Result

Discrete Version

	k-means	k-median
ℓ_{1}-metric	1.56	1.14
ℓ_{2}-metric	1.17	1.06
ℓ_{∞}-metric	3.94	1.74

Continuous Version

k-means in ℓ_{2}-metric ≈ 1.07
k-median in ℓ_{1}-metric ≈ 1.07

Stronger Inapproximability in ℓ_{∞}-metric

Two ingredients:

Stronger Inapproximability in ℓ_{∞}-metric

Two ingredients:

Theorem (Essentially Feige'98)
For every $\delta>0$ there is some $h \in \mathbb{N}$ such that deciding an instance of $(1-1 / e+\varepsilon)$-hypergraph vertex coverage problem on h-uniform hypergraphs is NP-hard.

Stronger Inapproximability in ℓ_{∞}-metric

Two ingredients:

> Theorem (Essentially Feige'98)
> For every $\delta>0$ there is some $h \in \mathbb{N}$ such that deciding an instance of $(1-1 / e+\varepsilon)$-hypergraph vertex coverage problem on h-uniform hypergraphs is NP-hard.

Gap hypergraph number in ℓ_{∞}-metric is 3

Key Takeaways

© Improved Inapproximability of

Key Takeaways

© Improved Inapproximability of
© k-means and k-median

Key Takeaways

© Improved Inapproximability of
© k-means and k-median
(0) In ℓ_{p}-metrics

Key Takeaways

© Improved Inapproximability of
© k-means and k-median
© In ℓ_{p}-metrics
© Using Transcript of Membership Protocol

Key Takeaways

© Improved Inapproximability of
© k-means and k-median
© In ℓ_{p}-metrics
© Using Transcript of Membership Protocol
© And Geometric Realization of Complete Graphs

Key Takeaways

© Improved Inapproximability of
© k-means and k-median
© In ℓ_{p}-metrics
© Using Transcript of Membership Protocol
© And Geometric Realization of Complete Graphs
© And Complete Hypergraphs

Open Problem 1

Can we embed vertices and hyperedges of h-uniform complete hypergraph in Hamming metric with gap number 3 ?

Open Problem 1

Can we embed vertices and hyperedges of h-uniform complete hypergraph in Hamming metric with gap number 3 ?
© Current Reduction gives gap number $1+2 /(h-1)$

Open Problem 1

Can we embed vertices and hyperedges
of h-uniform complete hypergraph in Hamming metric with gap number 3 ?
© Current Reduction gives gap number $1+2 /(h-1)$
© Dimension of embedding doesn't matter for ℓ_{2}-metric

- Johnson-Lindenstrauss dimension reduction

Open Problem 2

Can we embed vertices and edges of K_{n} in Euclidean metric with gap number 2?

Open Problem 2

Can we embed vertices and edges of K_{n} in Euclidean metric with gap number 2?

© It holds for $n=3$

Open Problem 2

Can we embed vertices and edges of K_{n} in Euclidean metric with gap number 2?

© It holds for $n=3$
© Can we prove an upper bound of 2 ?

Open Problem 3

Can we go beyond Triangle Inequality Barrier?

Open Problem 3

Can we go beyond Triangle Inequality Barrier?

© Can we show $>1+8 / e$ inapproximability of k-means in any metric?
© Can we show $>1+2 / e$ inapproximability of k-median in any metric?

THANK
 YOU!

