Recent Hardness of Approximation Results in Parameterized Complexity

Karthik C. S.

Rutgers University

December 10, 2021

Karthik C. S. (Rutgers University) Parameterized Inapproximability of k-Clique Dee

3

Part 1: Hardness of Approximation meets Parameterized Complexity

- k-Set Cover
- k-Set Intersection
- *k*-Clique

э

イロト イボト イヨト イヨト

Part 1: Hardness of Approximation meets Parameterized Complexity

- k-Set Cover
- k-Set Intersection
- *k*-Clique

Part 2: Hardness of Approximating k-Clique

- NP World
- Lin's Insight
- Lin's Result: Constant Inapproximability
- New Result: Almost Polynomial factor Inapproximability

Part 1: Hardness of Approximation meets Parameterized Complexity

- k-Set Cover
- k-Set Intersection
- *k*-Clique

Part 2: Hardness of Approximating k-Clique

- NP World
- Lin's Insight
- Lin's Result: Constant Inapproximability
- New Result: Almost Polynomial factor Inapproximability

Part 3: High Level Remarks

Part 1: Hardness of Approximation meets Parameterized Complexity

- k-Set Cover
- k-Set Intersection
- *k*-Clique

Part 2: Hardness of Approximating k-Clique

- NP World
- Lin's Insight
- Lin's Result: Constant Inapproximability
- New Result: Almost Polynomial factor Inapproximability

Part 3: High Level Remarks

Part 1

Hardness of Approximation meets Parameterized Complexity

Karthik C. S. (Rutgers University) Parameterized Inapproximability of *k*-Clique

• Many Optimization problems are NP-Hard

3

- Many Optimization problems are NP-Hard
- Coping mechanisms
 - Approximation Algorithms
 - Fixed Parameter Tractability

< □ > < @ >

- Many Optimization problems are NP-Hard
- Coping mechanisms
 - Approximation Algorithms
 - Fixed Parameter Tractability
- Set Cover, Clique, Set Intersection: Hard to cope!

- Many Optimization problems are NP-Hard
- Coping mechanisms
 - Approximation Algorithms
 - Fixed Parameter Tractability
- Set Cover, Clique, Set Intersection: Hard to cope!
- New direction: Fixed Parameter Approximability

Is there a $F(k) \cdot poly(n)$ time algorithm that approximates to a factor T(k)?

・ロト ・回ト ・ヨト

k-Set Cover

Input: $S_1, \ldots, S_n \subseteq [n]$ Output: S_{i_1}, \ldots, S_{i_k} whose union is [n]

• Greedy Algorithm: In *n* approximation (Slavík'96)

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

- Greedy Algorithm: In *n* approximation (Slavík'96)
- NP-Hard to do better (Dinur-Steurer'14)

イロト 不得下 イヨト イヨト 二日

- Greedy Algorithm: In *n* approximation (Slavík'96)
- NP-Hard to do better (Dinur-Steurer'14)
- W[2]-complete (Downey-Fellows'95)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Greedy Algorithm: In *n* approximation (Slavík'96)
- NP-Hard to do better (Dinur-Steurer'14)
- W[2]-complete (Downey-Fellows'95)
- W[1]-hard to approximate to F(k) factor for any F (K-Laekhanukit-Manurangsi'18)
- W[1]-hard to approximate to (log n)^{1/ε(k)} factor for any unbounded ε (Lin'19)

▲日▼▲□▼▲目▼▲目▼ ヨー ショマ

Input: $S_1, \ldots, S_n \subseteq [n]$ Output: S_{i_1}, \ldots, S_{i_k} whose intersection is maximized

イロト 不得下 イヨト イヨト 二日

- Input: $S_1, \ldots, S_n \subseteq [n]$ Output: S_{i_1}, \ldots, S_{i_k} whose intersection is maximized
 - NP World: Ruling out PTAS (assuming NP \neq P) is open!

▲日▼▲□▼▲目▼▲目▼ ヨー ショマ

6/25

Input: $S_1, \ldots, S_n \subseteq [n]$ Output: S_{i_1}, \ldots, S_{i_k} whose intersection is maximized

- NP World: Ruling out PTAS (assuming NP \neq P) is open!
- No poly factor approximation poly time algorithm assuming "weak-ETH" (Xavier'12)
 - Relies on Quasi-random PCP of (Khot'06)

・ロ ト ・ 一 マ ・ ー ヨ ト ・ ヨ ・ う へ つ ・

Input: $S_1, \ldots, S_n \subseteq [n]$ Output: S_{i_1}, \ldots, S_{i_k} whose intersection is maximized

- NP World: Ruling out PTAS (assuming NP \neq P) is open!
- No poly factor approximation poly time algorithm assuming "weak-ETH" (Xavier'12)
 - Relies on Quasi-random PCP of (Khot'06)
- W[1]-hard to approximate to $n^{o\left(\frac{1}{\sqrt{k}}\right)}$ factor (Lin'15)

▲日▼▲□▼▲□▼▲□▼ □ ● ●

E

590

<ロト < 回ト < 回ト < 回ト < 回ト -

• Trivial Algorithm: k approximation

э

DQC

イロト イボト イヨト イヨト

- Trivial Algorithm: k approximation
- NP-Hard to approximate to $n^{1-\varepsilon}$ factor for any $\varepsilon > 0$ (Håstad'96)

イロト 不得 トイラト イラト 二日

Sac

7/25

- Trivial Algorithm: k approximation
- NP-Hard to approximate to $n^{1-\epsilon}$ factor for any $\epsilon > 0$ (Håstad'96)
- W[1]-complete (Downey-Fellows'95)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- Trivial Algorithm: k approximation
- NP-Hard to approximate to $n^{1-\epsilon}$ factor for any $\epsilon > 0$ (Håstad'96)
- W[1]-complete (Downey-Fellows'95)
- W[1]-complete to approximate to constant factor (Lin'21)

▲日▼▲□▼▲目▼▲目▼ ヨー ショマ

- Trivial Algorithm: k approximation
- NP-Hard to approximate to $n^{1-\varepsilon}$ factor for any $\varepsilon > 0$ (Håstad'96)
- W[1]-complete (Downey-Fellows'95)
- W[1]-complete to approximate to constant factor (Lin'21)
- W[1]-complete to approximate to $k^{o(1)}$ factor (K-Khot'21)

▲日▼▲□▼▲目▼▲目▼ ヨー ショマ

2-CSP:

Karthik C. S. (Rutgers University) Parameterized Inapproximability of k-Clique

<u>2-CSP</u>:

Input: Graph G(V, E), Alphabet Σ , Constraints $\{\pi_e \subseteq \Sigma \times \Sigma \mid e \in E\}$

996

イロト 不得下 イヨト イヨト 二日

<u>2-CSP</u>:

Input: Graph G(V, E), Alphabet Σ , Constraints $\{\pi_e \subseteq \Sigma \times \Sigma \mid e \in E\}$ Output: Assignment $\sigma : V \to \Sigma$ maximizing $\Pr_{(u,v) \in E}[(\sigma(u), \sigma(v)) \in \pi_{(u,v)}]$

イロト 不得 トイヨト イヨト 二日

<u>2-CSP</u>:

Input: Graph G(V, E), Alphabet Σ , Constraints $\{\pi_e \subseteq \Sigma \times \Sigma \mid e \in E\}$ Output: Assignment $\sigma : V \to \Sigma$ maximizing $\Pr_{(u,v) \in E}[(\sigma(u), \sigma(v)) \in \pi_{(u,v)}]$

- NP-hard to approximate to 0.99-factor even when $|\boldsymbol{\Sigma}|=3$
 - PCP Theorem for NP (Arora-Safra'92; Arora-Lund-Motwani-Sudan-Szegedy'92)

イロト 不得 トイヨト イヨト 二日

<u>2-CSP</u>:

Input: Graph G(V, E), Alphabet Σ , Constraints $\{\pi_e \subseteq \Sigma \times \Sigma \mid e \in E\}$ Output: Assignment $\sigma : V \to \Sigma$ maximizing $\Pr_{(u,v) \in E}[(\sigma(u), \sigma(v)) \in \pi_{(u,v)}]$

- $\bullet~$ NP-hard to approximate to 0.99-factor even when $|\Sigma|=3$
 - PCP Theorem for NP (Arora-Safra'92; Arora-Lund-Motwani-Sudan-Szegedy'92)
- Parameterized by |V|: W[1]-complete

イロト イポト イヨト イヨト 二日

<u>2-CSP</u>:

Input: Graph G(V, E), Alphabet Σ , Constraints $\{\pi_e \subseteq \Sigma \times \Sigma \mid e \in E\}$ Output: Assignment $\sigma : V \to \Sigma$ maximizing $\Pr_{(u,v) \in E}[(\sigma(u), \sigma(v)) \in \pi_{(u,v)}]$

- $\bullet~$ NP-hard to approximate to 0.99-factor even when $|\Sigma|=3$
 - PCP Theorem for NP (Arora-Safra'92; Arora-Lund-Motwani-Sudan-Szegedy'92)
- Parameterized by |V|: W[1]-complete
- Parameterized by |V|: W[1]-hard to approximate?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<u>2-CSP</u>:

Input: Graph G(V, E), Alphabet Σ , Constraints $\{\pi_e \subseteq \Sigma \times \Sigma \mid e \in E\}$ Output: Assignment $\sigma : V \to \Sigma$ maximizing $\Pr_{(u,v) \in E}[(\sigma(u), \sigma(v)) \in \pi_{(u,v)}]$

- $\bullet~$ NP-hard to approximate to 0.99-factor even when $|\Sigma|=3$
 - PCP Theorem for NP (Arora-Safra'92; Arora-Lund-Motwani-Sudan-Szegedy'92)
- Parameterized by |V|: W[1]-complete
- Parameterized by |V|: W[1]-hard to approximate?
 - PCP Theorem for Parameterized Complexity

イロト イポト イヨト イヨト 二日

<u>2-CSP</u>:

Input: Graph G(V, E), Alphabet Σ , Constraints $\{\pi_e \subseteq \Sigma \times \Sigma \mid e \in E\}$ Output: Assignment $\sigma : V \to \Sigma$ maximizing $\Pr_{(u,v) \in E}[(\sigma(u), \sigma(v)) \in \pi_{(u,v)}]$

- $\bullet~$ NP-hard to approximate to 0.99-factor even when $|\Sigma|=3$
 - PCP Theorem for NP (Arora-Safra'92; Arora-Lund-Motwani-Sudan-Szegedy'92)
- Parameterized by |V|: W[1]-complete
- Parameterized by |V|: W[1]-hard to approximate?
 - PCP Theorem for Parameterized Complexity

Parameterized Inapproximability Hypothesis (PIH)

(Lokshtanov-Ramanujan-Saurabh-Zehavi'17)

There exists $\delta > 0$ such that 2-CSP on k vertices and alphabet size n is W[1]-hard to approximate to $(1 - \delta)$ factor

イロト 不得 トイラト イラト 二日

Theorem (Lin'21)

Approximating k-Clique to any O(1) factor is W[1]-hard.

Theorem (K-Khot'21)

Approximating k-Clique to any $k^{o(1)}$ factor is W[1]-hard.

Karthik C. S. (Rutgers University) Parameterized Inapproximability of k-Clique

・ロト ・ 同ト ・ ヨト ・ ヨト

Part 2

Hardness of Approximating *k*-Clique

Karthik C. S. (Rutgers University) Parameterized Inapproximability of k-Clique

December 10, 2021

10 / 25

• FGLSS reduction: first NP-hardness of approximation

(Feige-Goldwasser-Lovaász-Safra-Szegedy'91)

< ロ ト < 同 ト < 三 ト < 三 ト

3

11 / 25
• FGLSS reduction: first NP-hardness of approximation

(Feige-Goldwasser-Lovaász-Safra-Szegedy'91)

• Combined with sophisticated PCPs and graph products yields NP-hardness of approximating Clique to $n^{1-\varepsilon}$ factor

(Samorodnitsky-Trevisan'00)

イロト イポト イヨト イヨト 二日

- FGLSS reduction: first NP-hardness of approximation (Feige-Goldwasser-Lovaász-Safra-Szegedy'91)
- Combined with sophisticated PCPs and graph products yields NP-hardness of approximating Clique to $n^{1-\varepsilon}$ factor

(Samorodnitsky-Trevisan'00)

Theorem

Assuming PIH, approximating k-Clique to any O(1) factor is W[1]-hard.

Assuming PIH, approximating k-Clique to any O(1) factor is W[1]-hard.

< ロト < 同ト < ヨト < ヨト

3

Assuming PIH, approximating k-Clique to any O(1) factor is W[1]-hard.

2-CSP: Graph G(V, E), Alphabet Σ , Constraints $\{\pi_e \subseteq \Sigma \times \Sigma \mid e \in E\}$

イロト 不得 トイヨト イヨト

3

Assuming PIH, approximating k-Clique to any O(1) factor is W[1]-hard.

2-CSP: Graph G(V, E), Alphabet Σ , Constraints { $\pi_e \subseteq \Sigma \times \Sigma \mid e \in E$ } *k*-Clique: Graph $H(\{(e, \sigma_e) \mid e \in E, \sigma_e : e \to \Sigma, \sigma_e \in \pi_e\}, F), k := |E|$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Assuming PIH, approximating k-Clique to any O(1) factor is W[1]-hard.

2-CSP: Graph G(V, E), Alphabet Σ , Constraints { $\pi_e \subseteq \Sigma \times \Sigma \mid e \in E$ } *k*-Clique: Graph $H(\{(e, \sigma_e) \mid e \in E, \sigma_e : e \to \Sigma, \sigma_e \in \pi_e\}, F), k := |E|$ Edges in H: $(e, \sigma_e : e \to \Sigma)$ and $(e', \sigma'_{e'} : e' \to \Sigma)$ is NOT an edge in Hiff $\exists v \in e \cap e'$ such that $\sigma_e(v) \neq \sigma'_{e'}(v)$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Assuming PIH, approximating k-Clique to any O(1) factor is W[1]-hard.

2-CSP: Graph G(V, E), Alphabet Σ , Constraints { $\pi_e \subseteq \Sigma \times \Sigma \mid e \in E$ } *k*-Clique: Graph $H(\{(e, \sigma_e) \mid e \in E, \sigma_e : e \to \Sigma, \sigma_e \in \pi_e\}, F), k := |E|$ Edges in H: $(e, \sigma_e : e \to \Sigma)$ and $(e', \sigma'_{e'} : e' \to \Sigma)$ is NOT an edge in Hiff $\exists v \in e \cap e'$ such that $\sigma_e(v) \neq \sigma'_{e'}(v)$

Completeness: $\sigma : V \to \Sigma$ satifies all constraints then there is |E| sized clique in H: {((u, v), ($\sigma(u), \sigma(v)$)) | (u, v) $\in E$ }

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Assuming PIH, approximating k-Clique to any O(1) factor is W[1]-hard.

2-CSP: Graph G(V, E), Alphabet Σ , Constraints $\{\pi_e \subseteq \Sigma \times \Sigma \mid e \in E\}$ *k*-Clique: Graph $H(\{(e, \sigma_e) \mid e \in E, \sigma_e : e \to \Sigma, \sigma_e \in \pi_e\}, F), k := |E|$ Edges in H: $(e, \sigma_e : e \to \Sigma)$ and $(e', \sigma'_{e'} : e' \to \Sigma)$ is NOT an edge in Hiff $\exists v \in e \cap e'$ such that $\sigma_e(v) \neq \sigma'_{e'}(v)$ Completeness: $\sigma : V \to \Sigma$ satifies all constraints then there is |E| sized clique in H: $\{((u, v), (\sigma(u), \sigma(v))) \mid (u, v) \in E\}$ Soundness: If $T \subseteq \{(e, \sigma_e) \mid e \in E\}$ is a clique in H of size $(1 - \varepsilon)k$ then

we can recover an almost good global assignment

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

Boolean Hypercube Graph $Q_t(V, E)$:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

999

Boolean Hypercube Graph $Q_t(V, E)$:

Vertices: $V = \{0, 1\}^t$

Boolean Hypercube Graph $Q_t(V, E)$:

Vertices: $V = \{0, 1\}^t$

Edges: $(u, v) \in E$ iff u and v differ on 1 coordinate

▲ロト ▲ 同 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

Boolean Hypercube Graph $Q_t(V, E)$: Vertices: $V = \{0, 1\}^t$ Edges: $(u, v) \in E$ iff u and v differ on 1 coordinate

Weak Parameterized Inapproximability Hypothesis (WPIH)

There exists $\delta > 0$ such that given an instance φ of 2-CSP on Q_t over alphabet size *n*, it is W[1]-hard to distinguish: Completeness: φ has a satisfying assignment Soundness: For every assignment σ to φ there exists $i \in [t]$ such that δ fraction of edges in direction *i* are violated by σ

・ロト ・ 戸 ・ イヨト ・ ヨー うくつ

Boolean Hypercube Graph $Q_t(V, E)$: Vertices: $V = \{0, 1\}^t$ Edges: $(u, v) \in E$ iff u and v differ on 1 coordinate

Weak Parameterized Inapproximability Hypothesis (WPIH)

There exists $\delta > 0$ such that given an instance φ of 2-CSP on Q_t over alphabet size *n*, it is W[1]-hard to distinguish: Completeness: φ has a satisfying assignment Soundness: For every assignment σ to φ there exists $i \in [t]$ such that δ fraction of edges in direction *i* are violated by σ

Theorem Assuming WPIH, approximating k-Clique to any O(1) factor is W[1]-hard.

Karthik C. S. (Rutgers University) Parameterized Inapproximability of k-Clique

Approximating k-Clique to any O(1) factor is W[1]-hard.

э

14 / 25

イロト イヨト イヨト -

Approximating k-Clique to any O(1) factor is W[1]-hard.

• Start from *k*-Vector Sum problem

3

Approximating k-Clique to any O(1) factor is W[1]-hard.

- Start from *k*-Vector Sum problem
- Prove a weaker version of WPIH

3

14 / 25

Approximating k-Clique to any O(1) factor is W[1]-hard.

- Start from *k*-Vector Sum problem
- Prove a weaker version of WPIH
- Develop a novel modification of FGLSS reduction

k-Vector Sum Problem:

996

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

k-Vector Sum Problem:

Input: $U_1, \ldots, U_k \subseteq \mathbb{F}_2^{h \log n}$, $\forall i \in [k], \ |U_i| = n$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

k-Vector Sum Problem:

Input: $U_1, \ldots, U_k \subseteq \mathbb{F}_2^{h \log n}$, $\forall i \in [k], |U_i| = n$ Output: If there exists $(u_1, \ldots, u_k) \in U_1 \times \cdots \times U_k$ such that $\sum_{i \in [k]} u_i = \vec{0}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

<u>k-Vector Sum Problem</u>:

Input: $U_1, \ldots, U_k \subseteq \mathbb{F}_2^{h \log n}$, $\forall i \in [k], |U_i| = n$ Output: If there exists $(u_1, \ldots, u_k) \in U_1 \times \cdots \times U_k$ such that $\sum_{i \in [k]} u_i = \vec{0}$

Theorem (Abboud-Lewi-Williams'14)

k-Vector Sum Problem is W[1]-hard even when $h = O(k^2)$.

Encoding Function
$$g: \mathbb{F}_2^{h \log n} \to \mathbb{F}_2^{2h \log n}$$

Karthik C. S. (Rutgers University) Parameterized Inapproximability of k-Clique December 10, 2021

590

イロト イロト イヨト イヨト 二日

Encoding Function $g : \mathbb{F}_2^{h \log n} \to \mathbb{F}_2^{2h \log n}$ Special Subspace of $\mathbb{F}_2^{2h \log n}$: $\{ \vec{\alpha} \circ \vec{\alpha} \cdots \circ \vec{\alpha} \mid \vec{\alpha} \in \mathbb{F}_2^h \}$

 $\begin{array}{l} \text{Encoding Function } g: \mathbb{F}_2^{h\log n} \to \mathbb{F}_2^{2h\log n} \\ \text{Special Subspace of } \mathbb{F}_2^{2h\log n} \colon \{ \vec{\alpha} \circ \vec{\alpha} \cdots \circ \vec{\alpha} \mid \vec{\alpha} \in \mathbb{F}_2^h \} \\ & \langle \cdot \rangle : \mathbb{F}_2^h \times \mathbb{F}_2^{2h\log n} \to \mathbb{F}_2^{2\log n} \end{array}$

 $\begin{array}{l} \text{Encoding Function } g: \mathbb{F}_2^{h\log n} \to \mathbb{F}_2^{2h\log n} \\ \text{Special Subspace of } \mathbb{F}_2^{2h\log n} \colon \{ \vec{\alpha} \circ \vec{\alpha} \cdots \circ \vec{\alpha} \mid \vec{\alpha} \in \mathbb{F}_2^h \} \\ & \langle \cdot \rangle : \mathbb{F}_2^h \times \mathbb{F}_2^{2h\log n} \to \mathbb{F}_2^{2\log n} \end{array}$

• Every linear combination of vectors in U is non-zero under g

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

Encoding Function $g : \mathbb{F}_2^{h \log n} \to \mathbb{F}_2^{2h \log n}$ Special Subspace of $\mathbb{F}_2^{2h \log n}$: $\{ \vec{\alpha} \circ \vec{\alpha} \cdots \circ \vec{\alpha} \mid \vec{\alpha} \in \mathbb{F}_2^h \}$ $\langle \cdot \rangle : \mathbb{F}_2^h \times \mathbb{F}_2^{2h \log n} \to \mathbb{F}_2^{2 \log n}$

• Every linear combination of vectors in U is non-zero under g

• For every $\vec{\alpha} \neq \vec{\beta} \in \mathbb{F}_2^h$ and $u, v, w \in \mathbb{F}_2^{h \log n}$, we have $\langle \vec{\alpha}, g(w+u) \rangle \neq \langle \vec{\beta}, g(w+v) \rangle \in \mathbb{F}_2^{2 \log n}$

▲日▼▲□▼▲目▼▲目▼ ヨー ショマ

Construction of 3-CSP:

Construction of 3-CSP: Variables: $\mathbb{F}_2^{h \cdot k}$, Alphabet: $\mathbb{F}_2^{2 \log n}$

Construction of 3-CSP: Variables: $\mathbb{F}_2^{h \cdot k}$, Alphabet: $\mathbb{F}_2^{2 \log n}$ Assignment: $(\vec{\alpha_1}, \dots, \vec{\alpha_k}) \Longrightarrow \sum_{i \in [k]} \langle \vec{\alpha_i}, g(u_i) \rangle$

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

<u>Construction of 3-CSP</u>: Variables: $\mathbb{F}_2^{h \cdot k}$, Alphabet: $\mathbb{F}_2^{2 \log n}$ Assignment: $(\vec{\alpha_1}, \dots, \vec{\alpha_k}) \Longrightarrow \sum_{i \in [k]} \langle \vec{\alpha_i}, g(u_i) \rangle$

Constraints:

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

Construction of 3-CSP: Variables: $\mathbb{F}_2^{h \cdot k}$, Alphabet: $\mathbb{F}_2^{2 \log n}$ Assignment: $(\vec{\alpha_1}, \dots, \vec{\alpha_k}) \Longrightarrow \sum_{i \in [k]} \langle \vec{\alpha_i}, g(u_i) \rangle$

Constraints:

• Linearity Testing: $\sigma((\vec{\alpha_1}, \ldots, \vec{\alpha_k})) + \sigma((\vec{\beta_1}, \ldots, \vec{\beta_k})) = \sigma((\vec{\alpha_1} + \vec{\beta_1}, \ldots, \vec{\alpha_k} + \vec{\beta_k}))$

・ロ ト ・ 一 マ ・ ー ヨ ト ・ ヨ ・ う へ つ ・

Construction of 3-CSP: Variables: $\mathbb{F}_2^{h\cdot k}$, Alphabet: $\mathbb{F}_2^{2\log n}$ Assignment: $(\vec{\alpha_1}, \dots, \vec{\alpha_k}) \Longrightarrow \sum_{i \in [k]} \langle \vec{\alpha_i}, g(u_i) \rangle$

Constraints:

- Linearity Testing: $\sigma((\vec{\alpha_1}, \dots, \vec{\alpha_k})) + \sigma((\vec{\beta_1}, \dots, \vec{\beta_k})) = \sigma((\vec{\alpha_1} + \vec{\beta_1}, \dots, \vec{\alpha_k} + \vec{\beta_k}))$
- Membership Testing: σ((α₁,..., α_i + α,..., α_k)) − σ((α₁,..., α_i,..., α_k)) = ⟨α, g(u)⟩ for some u ∈ U_i

・ロ ト ・ 一 マ ・ ー ヨ ト ・ ヨ ・ う へ つ ・

Construction of 3-CSP: Variables: $\mathbb{F}_2^{h\cdot k}$, Alphabet: $\mathbb{F}_2^{2\log n}$ Assignment: $(\vec{\alpha_1}, \dots, \vec{\alpha_k}) \Longrightarrow \sum_{i \in [k]} \langle \vec{\alpha_i}, g(u_i) \rangle$

Constraints:

- Linearity Testing: $\sigma((\vec{\alpha_1}, \dots, \vec{\alpha_k})) + \sigma((\vec{\beta_1}, \dots, \vec{\beta_k})) = \sigma((\vec{\alpha_1} + \vec{\beta_1}, \dots, \vec{\alpha_k} + \vec{\beta_k}))$
- Membership Testing: $\sigma((\vec{\alpha_1}, \dots, \vec{\alpha_i} + \vec{\alpha}, \dots, \vec{\alpha_k})) - \sigma((\vec{\alpha_1}, \dots, \vec{\alpha_i}, \dots, \vec{\alpha_k})) = \langle \vec{\alpha}, g(u) \rangle$ for some $u \in U_i$

17/25

• Zero Testing: $\sigma((\vec{\alpha_1}, \ldots, \vec{\alpha_k})) = \sigma((\vec{\alpha_1} + \vec{\alpha}, \ldots, \vec{\alpha_k} + \vec{\alpha}))$

Construction of 3-CSP:

Constraints:

- Linearity Testing: $\sigma((\vec{\alpha_1}, \dots, \vec{\alpha_k})) + \sigma((\vec{\beta_1}, \dots, \vec{\beta_k})) = \sigma((\vec{\alpha_1} + \vec{\beta_1}, \dots, \vec{\alpha_k} + \vec{\beta_k}))$
- Membership Testing: $\sigma((\vec{\alpha_1}, \dots, \vec{\alpha_i} + \vec{\alpha}, \dots, \vec{\alpha_k})) - \sigma((\vec{\alpha_1}, \dots, \vec{\alpha_i}, \dots, \vec{\alpha_k})) = \langle \vec{\alpha}, g(u) \rangle$ for some $u \in U_i$
- Zero Testing: $\sigma((\vec{\alpha_1}, \ldots, \vec{\alpha_k})) = \sigma((\vec{\alpha_1} + \vec{\alpha}, \ldots, \vec{\alpha_k} + \vec{\alpha}))$ Construction of Graph:

・ロット 御 とう ほう く ほう しゅう

Construction of 3-CSP:

Constraints:

- Linearity Testing: $\sigma((\vec{\alpha_1},\ldots,\vec{\alpha_k})) + \sigma((\vec{\beta_1},\ldots,\vec{\beta_k})) = \sigma((\vec{\alpha_1}+\vec{\beta_1},\ldots,\vec{\alpha_k}+\vec{\beta_k}))$
- Membership Testing: $\sigma((\vec{\alpha_1}, \dots, \vec{\alpha_i} + \vec{\alpha}, \dots, \vec{\alpha_k})) - \sigma((\vec{\alpha_1}, \dots, \vec{\alpha_i}, \dots, \vec{\alpha_k})) = \langle \vec{\alpha}, g(u) \rangle$ for some $u \in U_i$

• Zero Testing: $\sigma((\vec{\alpha_1}, \ldots, \vec{\alpha_k})) = \sigma((\vec{\alpha_1} + \vec{\alpha}, \ldots, \vec{\alpha_k} + \vec{\alpha}))$ Construction of Graph:

Vertices: $\mathbb{F}_2^{h \cdot k} \times \mathbb{F}_2^{h \cdot k} \times \mathbb{F}_2^{\ell} \times \mathbb{F}_2^{\ell}$,

・ロ ト ・ 一 マ ・ ー ヨ ト ・ ヨ ・ う へ つ ・

Construction of 3-CSP:

Constraints:

- Linearity Testing: $\sigma((\vec{\alpha_1},\ldots,\vec{\alpha_k})) + \sigma((\vec{\beta_1},\ldots,\vec{\beta_k})) = \sigma((\vec{\alpha_1}+\vec{\beta_1},\ldots,\vec{\alpha_k}+\vec{\beta_k}))$
- Membership Testing: $\sigma((\vec{\alpha_1}, \dots, \vec{\alpha_i} + \vec{\alpha}, \dots, \vec{\alpha_k})) - \sigma((\vec{\alpha_1}, \dots, \vec{\alpha_i}, \dots, \vec{\alpha_k})) = \langle \vec{\alpha}, g(u) \rangle$ for some $u \in U_i$

• Zero Testing: $\sigma((\vec{\alpha_1}, \ldots, \vec{\alpha_k})) = \sigma((\vec{\alpha_1} + \vec{\alpha}, \ldots, \vec{\alpha_k} + \vec{\alpha}))$ Construction of Graph:

Vertices: $\mathbb{F}_2^{h \cdot k} \times \mathbb{F}_2^{h \cdot k} \times \mathbb{F}_2^{\ell} \times \mathbb{F}_2^{\ell}$,

Edges: Constraints of Membership and Zero testing

▲日▼▲□▼▲□▼▲□▼ □ ● ●
Approximating k-Clique to any $k^{o(1)}$ factor is W[1]-hard.

nac

Approximating k-Clique to any $k^{o(1)}$ factor is W[1]-hard.

• Start from k-Vector Sum problem over \mathbb{F}_q

Approximating k-Clique to any $k^{o(1)}$ factor is W[1]-hard.

- Start from k-Vector Sum problem over \mathbb{F}_q
- Use List Decoding of Hadamard Codes over \mathbb{F}_q

Approximating k-Clique to any $k^{o(1)}$ factor is W[1]-hard.

- Start from k-Vector Sum problem over \mathbb{F}_q
- Use List Decoding of Hadamard Codes over \mathbb{F}_q
- Careful Analysis as all arugments have "noise"

Theorem (Lin'21)

Approximating k-Clique to any O(1) factor is W[1]-hard.

Theorem (K-Khot'21)

Approximating k-Clique to any $k^{o(1)}$ factor is W[1]-hard.

Karthik C. S. (Rutgers University) Parameterized Inapproximability of k-Clique December 10, 2021

э

20 / 25

イロト イ理ト イヨト イヨト

Part 3 High Level Remarks

Karthik C. S. (Rutgers University) Parameterized Inapproximability of k-Clique

<u>2-CSP</u>:

Input: Graph G(V, E), Alphabet Σ , Constraints $\{\pi_e \subseteq \Sigma \times \Sigma \mid e \in E\}$ Output: Assignment $\sigma : V \to \Sigma$ maximizing $\Pr_{(u,v) \in E}[(\sigma(u), \sigma(v)) \in \pi_{(u,v)}]$

Parameterized Inapproximability Hypothesis (PIH)

(Lokshtanov-Ramanujan-Saurabh-Zehavi'17)

There exists $\delta > 0$ such that 2-CSP on k vertices and alphabet size n is W[1]-hard to approximate to $(1 - \delta)$ factor

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Current Techniques are Coping Mechanisms

• Hardness of Approximation Results for *k*-Set Cover, *k*-Set Intersection, and *k*-Clique

< □ > < @ >

Current Techniques are Coping Mechanisms

- Hardness of Approximation Results for *k*-Set Cover, *k*-Set Intersection, and *k*-Clique
- Each with a unique Gap-Creation technique

Current Techniques are Coping Mechanisms

- Hardness of Approximation Results for *k*-Set Cover, *k*-Set Intersection, and *k*-Clique
- Each with a unique Gap-Creation technique
 - k-Set Cover: Distance properties of Error Correcting Codes

- Hardness of Approximation Results for *k*-Set Cover, *k*-Set Intersection, and *k*-Clique
- Each with a unique Gap-Creation technique
 - k-Set Cover: Distance properties of Error Correcting Codes
 - k-Set Intersection: Extremal Graphs, Random Algebraic Constructions

- Hardness of Approximation Results for *k*-Set Cover, *k*-Set Intersection, and *k*-Clique
- Each with a unique Gap-Creation technique
 - k-Set Cover: Distance properties of Error Correcting Codes
 - k-Set Intersection: Extremal Graphs, Random Algebraic Constructions
 - k-Clique: Locally Decodable Codes, List Decodable Codes

- Hardness of Approximation Results for k-Set Cover, k-Set Intersection, and k-Clique
- Each with a unique Gap-Creation technique
 - k-Set Cover: Distance properties of Error Correcting Codes
 - k-Set Intersection: Extremal Graphs, Random Algebraic Constructions
 - k-Clique: Locally Decodable Codes, List Decodable Codes
- Coping Mechanisms since we cannot prove PIH

- Hardness of Approximation Results for *k*-Set Cover, *k*-Set Intersection, and *k*-Clique
- Each with a unique Gap-Creation technique
 - k-Set Cover: Distance properties of Error Correcting Codes
 - k-Set Intersection: Extremal Graphs, Random Algebraic Constructions
 - k-Clique: Locally Decodable Codes, List Decodable Codes
- Coping Mechanisms since we cannot prove PIH
 - Stark contrast with NP-world

- Hardness of Approximation Results for *k*-Set Cover, *k*-Set Intersection, and *k*-Clique
- Each with a unique Gap-Creation technique
 - k-Set Cover: Distance properties of Error Correcting Codes
 - k-Set Intersection: Extremal Graphs, Random Algebraic Constructions

- k-Clique: Locally Decodable Codes, List Decodable Codes
- Coping Mechanisms since we cannot prove PIH
 - Stark contrast with NP-world
- Proving PIH might lead to Unified Framework

Theorem (Lin-Ren-Sun-Wang'21)

If every constant approximation algorithm for k-Clique requires $n^{\omega(k/\log k)}$ time then PIH is true.

3

Theorem (Lin-Ren-Sun-Wang'21)

If every constant approximation algorithm for k-Clique requires $n^{\omega(k/\log k)}$ time then PIH is true.

 Lin'21, K-Khot'21: Every constant approximation algorithm for *k*-Clique requires *n*^{(log k)Ω(1)} time

Theorem (Lin-Ren-Sun-Wang'21)

If every constant approximation algorithm for k-Clique requires $n^{\omega(k/\log k)}$ time then PIH is true.

- Lin'21, K-Khot'21: Every constant approximation algorithm for *k*-Clique requires *n*^{(log k)Ω(1)} time
- Lin-Ren-Sun-Wang'21: Every constant approximation algorithm for *k*-Clique requires *n*^{Ω(log k)} time

Thankyou!

Karthik C. S. (Rutgers University) Parameterized Inapproximability of *k*-Clique

December 10, 2021