On Complexity of Closest Pair Problem

Karthik C. S. (Weizmann Institute of Science)

Joint work with

Pasin Manurangsi (UC Berkeley)

Part I

The Bird's Perspective

 \odot Closest Pair problem (CP) in ℓ_p -metric

⊚ Closest Pair problem (CP) in ℓ_p -metric Input: $A \subset \mathbb{R}^d$, |A| = n

 \odot Closest Pair problem (CP) in ℓ_p -metric

Input:
$$A \subset \mathbb{R}^d$$
, $|A| = n$
Output: a^* , $b^* \in A$, $\min_{\substack{a,b \in A \\ a \neq b}} ||a - b||_p$

 \odot Closest Pair problem (CP) in ℓ_p -metric

```
Input: A \subset \mathbb{R}^d, |A| = n

Output: a^*, b^* \in A, \min_{\substack{a,b \in A \\ a \neq b}} ||a - b||_p
```

 \odot Trivial algorithm: $O(n^2d)$

2

 \odot Closest Pair problem (CP) in ℓ_p -metric

```
Input: A \subset \mathbb{R}^d, |A| = n

Output: a^*, b^* \in A, \min_{\substack{a,b \in A \\ a \neq b}} ||a - b||_p
```

© Trivial algorithm: $O(n^2d)$ Bently-Shamos'76: $2^{O(d)}n \log n$ (for ℓ_2 -metric)

 \odot Closest Pair problem (CP) in ℓ_p -metric

```
Input: A \subset \mathbb{R}^d, |A| = n

Output: a^*, b^* \in A, \min_{\substack{a,b \in A \\ a \neq b}} ||a - b||_p
```

© Trivial algorithm: $O(n^2d)$ Bently-Shamos'76: $2^{O(d)}n\log n$ (for ℓ_2 -metric) Subcubic algorithms when d=O(n): Indyk-Lewenstein-Lipsky-Porat'04, Min-Kao-Zhu'09, Gold-Sharir'17

2

 \odot Closest Pair problem (CP) in ℓ_p -metric

```
Input: A \subset \mathbb{R}^d, |A| = n

Output: a^*, b^* \in A, \min_{\substack{a,b \in A \\ a \neq b}} ||a - b||_p
```

- © Trivial algorithm: $O(n^2d)$ Bently-Shamos'76: $2^{O(d)}n\log n$ (for ℓ_2 -metric) Subcubic algorithms when d = O(n): Indyk-Lewenstein-Lipsky-Porat'04, Min-Kao-Zhu'09, Gold-Sharir'17
- ⊚ What happens when $d \approx \text{polylog } n$?

2

 \odot Bichromatic Closest Pair problem (BCP) in ℓ_p metric

⊚ Bichromatic Closest Pair problem (BCP) in ℓ_p metric Input: $A, B \subset \mathbb{R}^d$, |A| = |B| = n

 \odot Bichromatic Closest Pair problem (BCP) in ℓ_p metric

Input:
$$A, B \subset \mathbb{R}^d$$
, $|A| = |B| = n$

Output: $a^* \in A$, $b^* \in B$, $\min_{\substack{a \in A \\ b \in B}} ||a - b||_p$

 \odot Bichromatic Closest Pair problem (BCP) in ℓ_p metric

Input:
$$A, B \subset \mathbb{R}^d$$
, $|A| = |B| = n$
Output: $a^* \in A$, $b^* \in B$, $\min_{\substack{a \in A \\ b \in B}} ||a - b||_p$

⊚ Trivial algorithm: $O(n^2d)$

⊚ Bichromatic Closest Pair problem (BCP) in ℓ_p metric Input: $A, B \subset \mathbb{R}^d$, |A| = |B| = nOutput: $a^* \in A$, $b^* \in B$, $\min_{\substack{a \in A \\ b \in B}} ||a - b||_p$

- ⊚ Trivial algorithm: $O(n^2d)$
- © Computationally equivalent to determining Minimum Spanning Tree in ℓ_p -metric [Agarwal-Edelsbrunner-Schwarzkopf-Welzl'91, Krznaric-Levcopoulos-Nilsson'99]

⊚ Bichromatic Closest Pair problem (BCP) in ℓ_p metric Input: $A, B \subset \mathbb{R}^d$, |A| = |B| = nOutput: $a^* \in A$, $b^* \in B$, $\min_{\substack{a \in A \\ b \in B}} ||a - b||_p$

- \odot Trivial algorithm: $O(n^2d)$
- © Computationally equivalent to determining Minimum Spanning Tree in ℓ_p -metric [Agarwal-Edelsbrunner-Schwarzkopf-Welzl'91, Krznaric-Levcopoulos-Nilsson'99]
- ⊚ What happens when $d \approx \text{polylog } n$?

⊚ Bichromatic Closest Pair problem (BCP) in ℓ_p metric Input: $A, B \subset \mathbb{R}^d$, |A| = |B| = nOutput: $a^* \in A$, $b^* \in B$, $\min_{\substack{a \in A \\ b \in B}} ||a - b||_p$

- ⊚ Trivial algorithm: $O(n^2d)$
- © Computationally equivalent to determining Minimum Spanning Tree in ℓ_p -metric [Agarwal-Edelsbrunner-Schwarzkopf-Welzl'91, Krznaric-Levcopoulos-Nilsson'99]
- ⊚ What happens when $d \approx \text{polylog } n$? What happens when d = ω(1)?

Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon > 0$, there exists $k(\varepsilon) \in \mathbb{N}$, such that no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.

Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon > 0$, there exists $k(\varepsilon) \in \mathbb{N}$, such that no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.

Let $p \ge 1$. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:

Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon > 0$, there exists $k(\varepsilon) \in \mathbb{N}$, such that no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.

Let $p \ge 1$. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:

⊚ BCP in ℓ_p -metric when $d = \omega(\log n)$ [Alman-Williams'15].

Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon > 0$, there exists $k(\varepsilon) \in \mathbb{N}$, such that no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.

Let $p \ge 1$. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:

- ⊚ BCP in ℓ_p -metric when $d = \omega(\log n)$ [Alman-Williams'15].
- ⊚ (1 + δ)-approximate BCP in ℓ_p -metric when $d = \omega(\log n)$ [Rubinstein'18].

Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon > 0$, there exists $k(\varepsilon) \in \mathbb{N}$, such that no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.

Let $p \ge 1$. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:

- ⊚ BCP in ℓ_p -metric when $d = \omega(\log n)$ [Alman-Williams'15].
- ⊚ (1 + δ)-approximate BCP in ℓ_p -metric when $d = \omega(\log n)$ [Rubinstein'18].
- ⊚ BCP in ℓ_p -metric when $d = 2^{O(\log^* n)}$ [Williams'18, Chen'18].

BCP is at least as hard as CP in every ℓ_v -metric for all d.

Theorem (David-K-Laekhanukit'18)

Contact Dimension of a Graph

Contact Dimension of a Graph $(cd_p(G))$

Smallest dimension for which we can realize:

$$||u - v||_p = 1$$
 if $(u, v) \in G$ and $||u - v||_p > 1$ otherwise

Contact Dimension of a Graph

Contact Dimension of a Graph $(cd_p(G))$

Smallest dimension for which we can realize:

$$||u-v||_p=1$$
 if $(u,v) \in G$ and $||u-v||_p>1$ otherwise

Theorem (David-K-Laekhanukit'18)

Contact Dimension of a Graph

Contact Dimension of a Graph $(cd_p(G))$

Smallest dimension for which we can realize:

$$||u-v||_p=1$$
 if $(u,v) \in G$ and $||u-v||_p>1$ otherwise

Theorem (David-K-Laekhanukit'18)

- ⊚ $\operatorname{cd}_p(K_{n,n}) = \Theta(\log n)$ for p > 2 [David-K-Laekhanukit'18]
- \odot cd₂($K_{n,n}$) = $\Theta(n)$ [Maehara'91]

Proof Sketch

Theorem

Proof Sketch

Theorem

CP is as hard as BCP in ℓ_p -metric when $d = \Omega(\operatorname{cd}_p(K_{n,n}))$.

⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric

Proof Sketch

Theorem

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric

Theorem

CP is as hard as BCP in ℓ_p -metric when $d = \Omega(\operatorname{cd}_p(K_{n,n}))$.

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric

Theorem

CP is as hard as BCP in ℓ_p -metric when $d = \Omega(\operatorname{cd}_p(K_{n,n}))$.

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric

$$\forall i, j \in [n], i \neq j,$$
 $||x_i - x_j||_p^p \ge 1 + \alpha$
 $\forall i, j \in [n], i \neq j,$ $||y_i - y_j||_p^p \ge 1 + \alpha$
 $\forall i, j \in [n],$ $||x_i - y_j||_p^p = 1$

Theorem

CP is as hard as BCP in ℓ_p -metric when $d = \Omega(\operatorname{cd}_p(K_{n,n}))$.

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric

$$\forall i, j \in [n], i \neq j,$$
 $||x_i - x_j||_p^p \ge 1 + \alpha$
 $\forall i, j \in [n], i \neq j,$ $||y_i - y_j||_p^p \ge 1 + \alpha$
 $\forall i, j \in [n],$ $||x_i - y_j||_p^p = 1$

© Contract *A* and *B* such that $\max_{i,j\in[n]} \|a_i - b_j\|_p^p < \alpha$

7

Theorem

CP is as hard as BCP in ℓ_p -metric when $d = \Omega(\operatorname{cd}_p(K_{n,n}))$.

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric

$$\forall i, j \in [n], i \neq j,$$
 $||x_i - x_j||_p^p \ge 1 + \alpha$
 $\forall i, j \in [n], i \neq j,$ $||y_i - y_j||_p^p \ge 1 + \alpha$
 $\forall i, j \in [n],$ $||x_i - y_j||_p^p = 1$

- ⊚ Contract *A* and *B* such that $\max_{i,j \in [n]} ||a_i b_j||_p^p < \alpha$
- ⊚ We build $(n, d + d^*, A' \cup B')$ instance of **CP** in ℓ_v -metric

$$d \begin{cases} \vdots & \vdots & \vdots \\ a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & & \vdots \\ a_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ a_1' & a_2' & \cdots & a_n' \end{cases}$$

$$d \left\{ \begin{array}{cccc} \vdots & \vdots & & \vdots \\ a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & & \vdots \\ d^* \left\{ \begin{array}{cccc} \vdots & \vdots & & \vdots \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ a_1' & a_2' & \cdots & a_n' \end{array} \right. \right.$$

$$\|a_i'-a_j'\|_p^p$$

$$||a_i' - a_j'||_p^p = ||a_i - a_j||_p^p + ||x_i - x_j||_p^p$$

$$||a_i' - a_j'||_p^p = ||a_i - a_j||_p^p + ||x_i - x_j||_p^p > ||x_i - x_j||_p^p$$

$$d \begin{cases} \vdots & \vdots & \vdots & \vdots \\ a_{1} & a_{2} & \cdots & a_{n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1} & x_{2} & \cdots & x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1} & x_{2} & \cdots & x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1} & a_{2}' & \cdots & a_{n}' & b_{1}' & b_{2}' & \cdots & b_{n}' \end{cases}$$

$$||a_i' - a_j'||_p^p = ||a_i - a_j||_p^p + ||x_i - x_j||_p^p > ||x_i - x_j||_p^p \ge 1 + \alpha$$

Points from same set:

$$\|a_i' - a_j'\|_p^p = \|a_i - a_j\|_p^p + \|x_i - x_j\|_p^p > \|x_i - x_j\|_p^p \ge 1 + \alpha$$

Points from different sets:

$$\|a_i'-b_j'\|_p^p$$

8

$$d \begin{cases} \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1 & a_2 & \cdots & a_n & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ d^* \begin{cases} \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & x_n & y_1 & y_2 & \cdots & y_n \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_1' & a_2' & \cdots & a_n' & b_1' & b_2' & \cdots & b_n' \end{cases}$$

Points from same set:

$$\|a_i' - a_j'\|_p^p = \|a_i - a_j\|_p^p + \|x_i - x_j\|_p^p > \|x_i - x_j\|_p^p \ge 1 + \alpha$$

Points from different sets:

$$||a'_i - b'_j||_p^p = ||a_i - b_j||_p^p + ||x_i - y_j||_p^p$$

$$d \begin{cases} \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1 & a_2 & \cdots & a_n & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ d^* \begin{cases} \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \cdots & x_n & y_1 & y_2 & \cdots & y_n \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_1' & a_2' & \cdots & a_n' & b_1' & b_2' & \cdots & b_n' \end{cases}$$

Points from same set:

$$||a_i' - a_j'||_p^p = ||a_i - a_j||_p^p + ||x_i - x_j||_p^p > ||x_i - x_j||_p^p \ge 1 + \alpha$$

Points from different sets:

$$\|a_i' - b_j'\|_p^p = \|a_i - b_j\|_p^p + \|x_i - y_j\|_p^p = 1 + \|a_i - b_j\|_p^p$$

$$d \begin{cases} \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1 & a_2 & \cdots & a_n & b_1 & b_2 & \cdots & b_n \\ \vdots & \vdots & & \vdots & & \vdots & \vdots \\ d^* \begin{cases} \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & x_n & y_1 & y_2 & \cdots & y_n \\ \vdots & \vdots & & \vdots & & \vdots & \vdots \\ a_1' & a_2' & \cdots & a_n' & b_1' & b_2' & \cdots & b_n' \end{cases}$$

Points from same set:

$$||a_i' - a_j'||_p^p = ||a_i - a_j||_p^p + ||x_i - x_j||_p^p > ||x_i - x_j||_p^p \ge 1 + \alpha$$

Points from different sets:

$$\|a_i' - b_j'\|_p^p = \|a_i - b_j\|_p^p + \|x_i - y_j\|_p^p = 1 + \|a_i - b_j\|_p^p < 1 + \alpha$$

8

Closest Pair in ℓ_p -metric, p > 2

$$\operatorname{cd}_p(K_{n,n}) = \Theta(\log n) \text{ for } p > 2$$

Closest Pair in ℓ_p -metric, p > 2

$$\operatorname{cd}_p(K_{n,n}) = \Theta(\log n) \text{ for } p > 2$$

Theorem (David-K-Laekhanukit'18)

Let p > 2. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:

⊚ CP in ℓ_p -metric when $d = \omega(\log n)$.

Closest Pair in ℓ_p -metric, p > 2

$$\operatorname{cd}_p(K_{n,n}) = \Theta(\log n) \text{ for } p > 2$$

Theorem (David-K-Laekhanukit'18)

Let p > 2. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:

- ⊚ CP in ℓ_p -metric when $d = \omega(\log n)$.
- ⊚ $(1 + \delta)$ -approximate CP in ℓ_p -metric when $d = \omega(\log n)$.

$$\operatorname{cd}_2(K_{n,n}) = \Theta(n)$$

$$\operatorname{cd}_2(K_{n,n}) = \Theta(n)$$

Theorem

BCP and CP are computationally equivalent in ℓ_p -metric when $d = \Omega(\operatorname{cd}_p(K_{n,n}))$.

$$\operatorname{cd}_2(K_{n,n}) = \Theta(n)$$

Theorem

BCP and CP are computationally equivalent in ℓ_p -metric when $d = \Omega(\operatorname{cd}_p(K_{n,n}))$.

Raised as open question recently:

- Abboud-Rubinstein-Williams'17
- Williams'18
- O David-K-Laekhanukit'18

Theorem (K-Manurangsi'18)

Let $p \ge 1$. Assuming SETH, for every $\varepsilon > 0$,

⊚ no $n^{2-ε}$ time algorithm can solve CP in $ℓ_p$ -metric when $d = (\log n)^{Ω_ε(1)}$.

Theorem (K-Manurangsi'18)

Let $p \ge 1$. Assuming SETH, for every $\varepsilon > 0$,

- ⊚ no $n^{2-ε}$ time algorithm can solve CP in $ℓ_p$ -metric when $d = (\log n)^{Ω_ε(1)}$.
- © no $n^{1.5-\varepsilon}$ time algorithm can solve $(1 + \delta)$ -approximate CP in ℓ_p -metric when $d = \omega(\log n)$.

Proof Idea

Proof Idea

Proof Idea

⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric
- \odot Let $d^* = \operatorname{cd}_p(G_1) = \cdots = \operatorname{cd}_p(G_k)$ and $E(G_1), \ldots, E(G_k) \subseteq [n] \times [n]$

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric
- \odot Let $d^* = \operatorname{cd}_p(G_1) = \cdots = \operatorname{cd}_p(G_k)$ and $E(G_1), \ldots, E(G_k) \subseteq [n] \times [n]$

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric
- \odot Let $d^* = \operatorname{cd}_p(G_1) = \cdots = \operatorname{cd}_p(G_k)$ and $E(G_1), \ldots, E(G_k) \subseteq [n] \times [n]$

⊚
$$\forall r \in [k], X_r, Y_r \subset \mathbb{R}^{d^*}, |X_r| = |Y_r| = n, \text{ and } \forall i, j \in [n],$$

$$i \neq j, \qquad ||x_i^r - x_j^r||_p > 1 \text{ and } ||y_i^r - y_j^r||_p > 1$$

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric
- \odot Let $d^* = \operatorname{cd}_p(G_1) = \cdots = \operatorname{cd}_p(G_k)$ and $E(G_1), \ldots, E(G_k) \subseteq [n] \times [n]$

⊚
$$\forall r \in [k], X_r, Y_r \subset \mathbb{R}^{d^*}, |X_r| = |Y_r| = n, \text{ and } \forall i, j \in [n],$$

$$i \neq j, \qquad ||x_i^r - x_j^r||_p > 1 \text{ and } ||y_i^r - y_j^r||_p > 1$$

$$(i, j) \notin E(G_r), \qquad ||x_i^r - y_j^r||_p > 1$$

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric
- \odot Let $d^* = \operatorname{cd}_p(G_1) = \cdots = \operatorname{cd}_p(G_k)$ and $E(G_1), \ldots, E(G_k) \subseteq [n] \times [n]$

⊚
$$\forall r \in [k], X_r, Y_r \subset \mathbb{R}^{d^*}, |X_r| = |Y_r| = n, \text{ and } \forall i, j \in [n],$$

$$i \neq j, \qquad ||x_i^r - x_j^r||_p > 1 \text{ and } ||y_i^r - y_j^r||_p > 1$$

$$(i, j) \notin E(G_r), \qquad ||x_i^r - y_j^r||_p > 1$$

$$(i, j) \in E(G_r), \qquad ||x_i^r - y_j^r||_p = 1$$

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric
- \odot Let $d^* = \operatorname{cd}_p(G_1) = \cdots = \operatorname{cd}_p(G_k)$ and $E(G_1), \ldots, E(G_k) \subseteq [n] \times [n]$
- ⊚ $\forall r \in [k], X_r, Y_r \subset \mathbb{R}^{d^*}, |X_r| = |Y_r| = n, \text{ and } \forall i, j \in [n],$ $i \neq j, \qquad ||x_i^r x_j^r||_p > 1 \text{ and } ||y_i^r y_j^r||_p > 1$ $(i, j) \notin E(G_r), \qquad ||x_i^r y_j^r||_p > 1$ $(i, j) \in E(G_r), \qquad ||x_i^r y_j^r||_p = 1$
- ⊚ Build k instances $(n, d + d^*, A'_r \cup B'_r)$ of CP in ℓ_p -metric $(\forall r \in [k])$ $A'_r = A \circ X_r, B'_r = B \circ Y_r$

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric
- \odot Let $d^* = \operatorname{cd}_p(G_1) = \cdots = \operatorname{cd}_p(G_k)$ and $E(G_1), \ldots, E(G_k) \subseteq [n] \times [n]$

$$\forall r \in [k], \ X_r, Y_r \subset \mathbb{R}^{d^*}, \ |X_r| = |Y_r| = n, \text{ and } \forall i, j \in [n],$$

$$i \neq j, \qquad ||x_i^r - x_j^r||_p > 1 \text{ and } ||y_i^r - y_j^r||_p > 1$$

$$(i, j) \notin E(G_r), \qquad ||x_i^r - y_j^r||_p > 1$$

$$(i, j) \in E(G_r), \qquad ||x_i^r - y_j^r||_p = 1$$

- ⊚ Build k instances $(n, d + d^*, A'_r \cup B'_r)$ of CP in ℓ_p -metric $(\forall r \in [k])$ $A'_r = A \circ X_r, B'_r = B \circ Y_r$
- ⊚ Let (a_{i^*}, b_{j^*}) be solution to BCP

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric
- \odot Let $d^* = \operatorname{cd}_p(G_1) = \cdots = \operatorname{cd}_p(G_k)$ and $E(G_1), \ldots, E(G_k) \subseteq [n] \times [n]$
- $\forall r \in [k], \ X_r, Y_r \subset \mathbb{R}^{d^*}, \ |X_r| = |Y_r| = n, \text{ and } \forall i, j \in [n],$ $i \neq j, \qquad ||x_i^r x_j^r||_p > 1 \text{ and } ||y_i^r y_j^r||_p > 1$ $(i, j) \notin E(G_r), \qquad ||x_i^r y_j^r||_p > 1$ $(i, j) \in E(G_r), \qquad ||x_i^r y_j^r||_p = 1$
- ⊚ Build k instances $(n, d + d^*, A'_r \cup B'_r)$ of CP in ℓ_p -metric $(\forall r \in [k])$ $A'_r = A \circ X_r, B'_r = B \circ Y_r$
- ⊚ Let (a_{i^*}, b_{j^*}) be solution to BCP
- ⊚ There exists $r^* \in [k]$, $(i^*, j^*) \in E(G_{r^*})$

- ⊚ (n, d, A, B) be instance of BCP in ℓ_p -metric
- \odot Let $d^* = \operatorname{cd}_p(G_1) = \cdots = \operatorname{cd}_p(G_k)$ and $E(G_1), \ldots, E(G_k) \subseteq [n] \times [n]$
- $\forall r \in [k], \ X_r, Y_r \subset \mathbb{R}^{d^*}, \ |X_r| = |Y_r| = n, \text{ and } \forall i, j \in [n],$ $i \neq j, \qquad ||x_i^r x_j^r||_p > 1 \text{ and } ||y_i^r y_j^r||_p > 1$ $(i, j) \notin E(G_r), \qquad ||x_i^r y_j^r||_p > 1$ $(i, j) \in E(G_r), \qquad ||x_i^r y_j^r||_p = 1$
- ⊚ Build k instances $(n, d + d^*, A'_r \cup B'_r)$ of CP in ℓ_p -metric $(\forall r \in [k])$ $A'_r = A \circ X_r, B'_r = B \circ Y_r$
- ⊚ Let (a_{i^*}, b_{i^*}) be solution to BCP
- ⊚ There exists $r^* \in [k]$, $(i^*, j^*) \in E(G_{r^*})$
- ⊚ Then (a'_{i^*}, b'_{j^*}) in r^* instance $(n, d + d^*, A'_{r^*} \cup B'_{r^*})$ of CP is a solution

Dense Bipartite Graph with Low Contact Dimension

$$\odot \ \forall r \in [k], \ \operatorname{cd}_p(G_r) = \operatorname{polylog} n, \ \forall p \geqslant 1$$

$$\odot \ \forall r \in [k], \ \operatorname{cd}_p(G_r) = \operatorname{polylog} n, \ \forall p \geqslant 1$$

- \odot It suffices to find one G^* on $V(K_{n,n})$ such that
 - $|E(G^*)| = n^{2-o(1)}$
 - ∘ $\operatorname{cd}_p(G^*) = \operatorname{polylog} n, \forall p \ge 1$

- $\odot \ \forall r \in [k], \ \operatorname{cd}_p(G_r) = \operatorname{polylog} n, \ \forall p \geqslant 1$

- \odot It suffices to find one G^* on $V(K_{n,n})$ such that
 - $|E(G^*)| = n^{2-o(1)}$
 - $\operatorname{cd}_p(G^*) = \operatorname{polylog} n, \forall p \ge 1$
- ⊚ It suffices to find X^* , $Y^* \subseteq \{0,1\}^{d^*}$ where $d^* = \operatorname{cd}_0(G^*)$

- $\odot \ \forall r \in [k], \ \operatorname{cd}_p(G_r) = \operatorname{polylog} n, \ \forall p \geqslant 1$

- \odot It suffices to find one G^* on $V(K_{n,n})$ such that
 - $|E(G^*)| = n^{2-o(1)}$
 - $\operatorname{cd}_p(G^*) = \operatorname{polylog} n, \forall p \ge 1$
- ⊚ It suffices to find X^* , $Y^* \subseteq \{0,1\}^{d^*}$ where $d^* = \operatorname{cd}_0(G^*)$
- ⊚ It suffices to find X^* , $Y^* \subseteq \mathbb{F}_q^{d'}$ where $d' = d^*/q$

- $\odot \forall r \in [k], \operatorname{cd}_p(G_r) = \operatorname{polylog} n, \forall p \geqslant 1$

- \odot It suffices to find one G^* on $V(K_{n,n})$ such that
 - $|E(G^*)| = n^{2-o(1)}$
 - ∘ $\operatorname{cd}_{p}(G^{*}) = \operatorname{polylog} n, \forall p \ge 1$
- ⊚ It suffices to find X^* , $Y^* \subseteq \{0,1\}^{d^*}$ where $d^* = \operatorname{cd}_0(G^*)$
- ⊚ It suffices to find X^* , $Y^* \subseteq \mathbb{F}_q^{d'}$ where $d' = d^*/q$

$$f \in \mathbb{F}_q \longrightarrow (0, \dots, 0, 1, 0, \dots, 0) \in \{0, 1\}^q$$

$$f^{\text{th}} \text{ position}$$

<u>GOAL</u>

GOAL

GOAL

Construct a bipartite graph G^* on $V(K_{n,n})$:

Oense: $|E(G^*)| = n^{2-o(1)}$

GOAL

- **Our Dense:** $|E(G^*)| = n^{2-o(1)}$
- **o** Low Contact Dimension: $cd_0(G^*) = d^* = polylog n$

GOAL

- **Output** Dense: $|E(G^*)| = n^{2-o(1)}$
- **Output Low Contact Dimension**: $cd_0(G^*) = d^* = polylog n$
 - \Rightarrow Construct X^* , $Y^* \subseteq \mathbb{F}_q^{d^*}$, $\forall i, j \in [n]$ and some $h \in [d^*]$:

$$i \neq j$$
, $||x_i - x_j||_0 > h$ and $||y_i - y_j||_0 > h$

$$(i, j) \notin E(G^*), \quad ||x_i - y_j||_0 > h$$

$$(i, j) \in E(G^*), \quad ||x_i - y_j||_0 = h$$

GOAL

```
    Dense: |E(G*)| = n<sup>2-o(1)</sup>
        (log n)<sup>log log n</sup>
        (log n)<sup>log log n</sup>
        (log n)<sup>log log n</sup>
        (log n)<sup>log log n</sup>
        ⇒ Construct X*, Y* ⊆ F<sub>q</sub><sup>d*</sup>, ∀i, j ∈ [n] and some h ∈ [d*]:
        i ≠ j, ||x<sub>i</sub> - x<sub>j</sub>||<sub>0</sub>>h and ||y<sub>i</sub> - y<sub>j</sub>||<sub>0</sub>>h
        (i, j) ∉ E(G*), ||x<sub>i</sub> - y<sub>j</sub>||<sub>0</sub>>h
        (i, j) ∈ E(G*), ||x<sub>i</sub> - y<sub>j</sub>||<sub>0</sub>=h
```

GOAL

Construct a bipartite graph G^* on $V(K_{n,n})$:

```
    Dense: |E(G*)| = n<sup>2-o(1)</sup>
        (log n)<sup>log log n</sup>
        (log n)<sup>log log n</sup>
        (log n)<sup>log log n</sup>
        (log n)<sup>log log n</sup>
        ⇒ Construct X*, Y* ⊆ \mathbb{F}_q^{d^*}, \forall i, j \in [n] and some h \in [d^*]:
        i \neq j, ||x<sub>i</sub> - x<sub>j</sub>||<sub>0</sub>>h and ||y<sub>i</sub> - y<sub>j</sub>||<sub>0</sub>>h
        (i, j) ∉ E(G*), ||x<sub>i</sub> - y<sub>j</sub>||<sub>0</sub>>h
        (i, j) ∈ E(G*), ||x<sub>i</sub> - y<sub>j</sub>||<sub>0</sub>=h
```

Contact Dimension of a Random Graph is $\Omega(n)$

Polynomials are our friends.

- TCS Folklore

 \odot \mathcal{P} := set of degree d univariate polynomials over \mathbb{F}_q

- ⊚ \mathcal{P} := set of degree d univariate polynomials over \mathbb{F}_q

- ⊚ \mathcal{P} := set of degree d univariate polynomials over \mathbb{F}_q
- $\odot \ n:=q^{d+1}=|\mathcal{P}|=|\mathbb{Q}|$

- ⊚ \mathcal{P} := set of degree d univariate polynomials over \mathbb{F}_q
- \odot $\mathbb{Q} := \{ x^{d+1} + p(x) \mid p(x) \in \mathcal{P} \}$
- \odot $n := q^{d+1} = |\mathcal{P}| = |\mathcal{Q}|$
- $\odot \mathcal{R} := \text{set of degree } d + 1 \text{ polynomials with all } \frac{\text{distinct roots}}{d}$

- \odot \mathcal{P} := set of degree d univariate polynomials over \mathbb{F}_q
- \bigcirc $\mathbb{Q} := \{ x^{d+1} + p(x) \mid p(x) \in \mathcal{P} \}$
- \bigcirc $n := q^{d+1} = |\mathcal{P}| = |\mathbb{Q}|$
- $\odot \Re := \text{set of degree } d + 1 \text{ polynomials with all } \text{distinct roots}$

- \odot \mathcal{P} := set of degree d univariate polynomials over \mathbb{F}_q
- \odot $\mathbb{Q} := \{ x^{d+1} + p(x) \mid p(x) \in \mathcal{P} \}$
- \bigcirc $n := q^{d+1} = |\mathcal{P}| = |\mathbb{Q}|$
- $\odot \Re := \text{set of degree } d + 1 \text{ polynomials with all } \text{distinct roots}$

$$q = \Theta((\log n)^{\log \log n})$$
 , $d = \Theta\left(\frac{\log n}{(\log \log n)^2}\right)$

$$q = \Theta((\log n)^{\log \log n})$$
 , $d = \Theta\left(\frac{\log n}{(\log \log n)^2}\right)$

• Every distinct
$$\alpha_1, \dots, \alpha_{d+1} \in \mathbb{F}_q \Rightarrow \prod_{i \in [d+1]} (x - \alpha_i) \in \mathcal{R}$$

$$q = \Theta((\log n)^{\log \log n})$$
 , $d = \Theta\left(\frac{\log n}{(\log \log n)^2}\right)$

- $|\mathcal{R}| = \begin{pmatrix} q \\ d+1 \end{pmatrix}$
 - Every distinct $\alpha_1, \dots, \alpha_{d+1} \in \mathbb{F}_q \Rightarrow \prod_{i \in [d+1]} (x \alpha_i) \in \mathcal{R}$
- ⊚ For all $p(x) \in \mathcal{P}$, Number of Neighbors of $p(x) = \binom{q}{d+1}$
 - Fix $p(x) \in \mathcal{P}$ and $r(x) \in \mathcal{R} \Rightarrow (p(x), r(x) + p(x)) \in E(G^*)$

$$q = \Theta((\log n)^{\log \log n})$$
 , $d = \Theta\left(\frac{\log n}{(\log \log n)^2}\right)$

- \bigcirc $|\mathcal{R}| = \begin{pmatrix} q \\ d+1 \end{pmatrix}$
 - Every distinct $\alpha_1, \ldots, \alpha_{d+1} \in \mathbb{F}_q \Rightarrow \prod_{i \in [d+1]} (x \alpha_i) \in \mathcal{R}$
- ⊚ For all $p(x) \in \mathcal{P}$, Number of Neighbors of $p(x) = \binom{q}{d+1}$
 - Fix $p(x) \in \mathcal{P}$ and $r(x) \in \mathcal{R} \Rightarrow (p(x), r(x) + p(x)) \in E(G^*)$
- \odot Density of G^* :

$$|E(G^*)| = |\mathcal{P}| \cdot \binom{q}{d+1} \ge n \cdot \frac{q^{d+1}}{(d+1)^{d+1}} > \frac{n^2}{(\log n)^{\frac{\log n}{(\log \log n)^2}}} = n^{2-o(1)}$$

Contact Dimension of G^*

⊚ For every $p(x) \in \mathcal{P}$ we have following point in $X^* \subseteq \mathbb{F}_q^q$:

$$(p(0), p(1), \ldots, p(q-1))$$

Contact Dimension of G^*

⊚ For every $p(x) \in \mathcal{P}$ we have following point in $X^* \subseteq \mathbb{F}_q^q$:

$$(p(0), p(1), \ldots, p(q-1))$$

 \odot For every $x^{d+1} + p(x) \in \mathbb{Q}$ we have following point in $Y^* \subseteq \mathbb{F}_q^q$:

$$\left(0^{d+1}+p(0),1^{d+1}+p(1),\ldots,(q-1)^{d+1}+p(q-1)\right)$$

Contact Dimension of *G**

⊚ For every $p(x) \in \mathcal{P}$ we have following point in $X^* \subseteq \mathbb{F}_q^q$:

$$(p(0), p(1), \ldots, p(q-1))$$

 \odot For every $x^{d+1} + p(x) \in \mathbb{Q}$ we have following point in $Y^* \subseteq \mathbb{F}_q^q$:

$$\left(0^{d+1}+p(0),1^{d+1}+p(1),\ldots,(q-1)^{d+1}+p(q-1)\right)$$

⊚ Difference of two points in X^* (similarly in Y^*) is evaluation of a degree d polynomial over \mathbb{F}_q :

Contact Dimension of *G**

⊚ For every $p(x) \in \mathcal{P}$ we have following point in $X^* \subseteq \mathbb{F}_q^q$:

$$(p(0), p(1), \ldots, p(q-1))$$

⊚ For every $x^{d+1} + p(x) \in \mathbb{Q}$ we have following point in $Y^* \subseteq \mathbb{F}_q^q$:

$$\left(0^{d+1}+p(0),1^{d+1}+p(1),\ldots,(q-1)^{d+1}+p(q-1)\right)$$

⊚ Difference of two points in X^* (similarly in Y^*) is evaluation of a degree $\frac{d}{d}$ polynomial over \mathbb{F}_q :

$$\forall i, j \in [n], i \neq j, ||x_i - x_j||_0 \ge q - d \text{ and } ||y_i - y_j||_0 \ge q - d$$

Contact Dimension of G^*

⊚ For every $p(x) \in \mathcal{P}$ we have following point in $X^* \subseteq \mathbb{F}_q^q$:

$$(p(0), p(1), \ldots, p(q-1))$$

 \odot For every $x^{d+1} + p(x) \in \mathbb{Q}$ we have following point in $Y^* \subseteq \mathbb{F}_q^q$:

$$(0^{d+1} + p(0), 1^{d+1} + p(1), \dots, (q-1)^{d+1} + p(q-1))$$

⊚ Difference of two points in X^* (similarly in Y^*) is evaluation of a degree $\frac{d}{d}$ polynomial over \mathbb{F}_q :

$$\forall i, j \in [n], i \neq j, ||x_i - x_j||_0 \ge q - d \text{ and } ||y_i - y_j||_0 \ge q - d$$

⊚ For any $(i, j) \in E(G^*)$ we have $x^{d+1} + p_j(x) - p_i(x)$ has d + 1 distinct roots:

Contact Dimension of *G**

⊚ For every $p(x) \in \mathcal{P}$ we have following point in $X^* \subseteq \mathbb{F}_q^q$:

$$(p(0), p(1), \ldots, p(q-1))$$

 \odot For every $x^{d+1} + p(x) \in \mathbb{Q}$ we have following point in $Y^* \subseteq \mathbb{F}_q^q$:

$$(0^{d+1} + p(0), 1^{d+1} + p(1), \dots, (q-1)^{d+1} + p(q-1))$$

⊚ Difference of two points in X^* (similarly in Y^*) is evaluation of a degree d polynomial over \mathbb{F}_q :

$$\forall i, j \in [n], i \neq j, ||x_i - x_j||_0 \ge q - d \text{ and } ||y_i - y_j||_0 \ge q - d$$

⊚ For any $(i, j) \in E(G^*)$ we have $x^{d+1} + p_j(x) - p_i(x)$ has d + 1 distinct roots:

$$\forall i, j \in [n], (i, j) \in E(G^*), ||x_i - y_j||_0 = q - d - 1$$

- ⊚ A bipartite graph G^* on $V(K_{n,n})$:
 - **Dense:** $|E(G^*)| = n^{2-o(1)}$
 - ★ Low Contact Dimension: $cd_0(G^*) = q = (\log n)^{\log \log n}$ over \mathbb{F}_q

- ⊚ A bipartite graph G^* on $V(K_{n,n})$:
 - ★ **Dense**: $|E(G^*)| = n^{2-o(1)}$
 - ★ Low Contact Dimension: $cd_0(G^*) = q = (\log n)^{\log \log n}$ over \mathbb{F}_q
- ⊚ $V(G^*)$ can be realized as points in $\{0,1\}^{q^2}$

- ⊚ A bipartite graph G^* on $V(K_{n,n})$:
 - ★ **Dense**: $|E(G^*)| = n^{2-o(1)}$
 - ★ Low Contact Dimension: $cd_0(G^*) = q = (\log n)^{\log \log n}$ over \mathbb{F}_q
- ⊚ $V(G^*)$ can be realized as points in $\{0,1\}^{q^2}$
- ⊚ Construct $k = n^{o(1)}$ isomorphic copies G_1, \ldots, G_k of G^* :
 - $\star E(G_1) \cup E(G_2) \cup \cdots \cup E(G_k) = E(K_{n,n})$
 - $\star \forall r \in [k], \operatorname{cd}_p(G_r) = q^2, \forall p \geqslant 1$

- ⊚ A bipartite graph G^* on $V(K_{n,n})$:
 - ★ **Dense**: $|E(G^*)| = n^{2-o(1)}$
 - ★ Low Contact Dimension: $cd_0(G^*) = q = (\log n)^{\log \log n}$ over \mathbb{F}_q
- ⊚ $V(G^*)$ can be realized as points in $\{0,1\}^{q^2}$
- ⊚ Construct $k = n^{o(1)}$ isomorphic copies G_1, \ldots, G_k of G^* :
 - $\star E(G_1) \cup E(G_2) \cup \cdots \cup E(G_k) = E(K_{n,n})$
 - $\star \forall r \in [k], \operatorname{cd}_p(G_r) = q^2, \forall p \geqslant 1$

$$(A \circ X_1, B \circ Y_1, n, d + q^2)$$

$$(A \circ X_2, B \circ Y_2, n, d + q^2)$$

$$\vdots$$

$$\vdots$$

$$(A \circ X_k, B \circ Y_k, n, d + q^2)$$

CP instances

- ⊚ A bipartite graph G^* on $V(K_{n,n})$:
 - ★ Dense: $|E(G^*)| = \mathbf{n}^{2-\varepsilon'}$
 - ★ Low Contact Dimension: $cd_0(G^*) = q = (\log n)^{O(1/\epsilon')}$ over \mathbb{F}_q
- ⊚ $V(G^*)$ can be realized as points in $\{0,1\}^{q^2}$
- ⊚ Construct $k = \tilde{\mathbf{O}}(\mathbf{n}^{\varepsilon'})$ isomorphic copies G_1, \ldots, G_k of G^* :
 - \star $E(G_1) \cup E(G_2) \cup \cdots \cup E(G_k) = E(K_{n,n})$
 - $\star \forall r \in [k], \operatorname{cd}_{p}(G_{r}) = q^{2}, \forall p \geqslant 1$

$$(A \circ X_1, B \circ Y_1, n, d + q^2)$$

$$(A \circ X_2, B \circ Y_2, n, d + q^2)$$

$$\vdots$$

$$\vdots$$

$$(A \circ X_k, B \circ Y_k, n, d + q^2)$$

GP instances

Closest Pair in Euclidean metric

Theorem (K-Manurangsi'18)

Let $p \ge 1$. Assuming SETH, for every $\varepsilon > 0$,

- ⊚ no $n^{2-ε}$ time algorithm can solve CP in $ℓ_p$ -metric when $d = (\log n)^{Ω_ε(1)}$.
- ⊚ no $n^{1.5-ε}$ time algorithm can solve (1 + δ)-approximate CP in $ℓ_p$ -metric when $d = ω(\log n)$.

Key Takeaways

For every $p \ge 1$,

⊚ Closest Pair problem in ℓ_p -metric cannot be solved¹ in subquadratic (in n) time when $d = (\log n)^{\Omega(1)}$.

¹Conditions apply.

Key Takeaways

For every $p \ge 1$,

- © Closest Pair problem in ℓ_p -metric cannot be solved¹ in subquadratic (in n) time when $d = (\log n)^{\Omega(1)}$.
- © Closest Pair and Bichromatic Closest Pair in ℓ_p -metric are computationally equivalent² when $d = (\log n)^{\Omega(1)}$.

¹Conditions apply.

²See footnote 1.

Key Takeaways

For every $p \ge 1$,

- © Closest Pair problem in ℓ_p -metric cannot be solved¹ in subquadratic (in n) time when $d = (\log n)^{\Omega(1)}$.
- © Closest Pair and Bichromatic Closest Pair in ℓ_p -metric are computationally equivalent² when $d = (\log n)^{\Omega(1)}$.

There is a dense bipartite graph with low contact dimension

¹Conditions apply.

²See footnote 1.

Part II

The Frog's Perspective

Fine-Grained Complexity of Closest Pair

Theorem

Let $p \ge 1$. Assuming SETH, for every $\varepsilon > 0$,

- ⊚ no $n^{2-\varepsilon}$ time algorithm can solve CP in ℓ_p -metric when $d = (\log n)^{\Omega_{\varepsilon}(1)}$.
- © no $n^{1.5-\varepsilon}$ time algorithm can solve $(1 + \delta)$ -approximate CP in ℓ_p -metric when $d = \omega(\log n)$.

We want a code-center pair (C^*, s^*) as follows:

⊚ $C^* \subseteq \mathbb{F}_q^{\ell}$ of size n is a linear code of minimum distance Δ

- \odot $C^* \subseteq \mathbb{F}_q^{\ell}$ of size n is a linear code of minimum distance Δ
- \circ $s^* \in \mathbb{F}_q^{\ell}$ and $r^* < \Delta$ such that:

- ⊚ $C^* \subseteq \mathbb{F}_q^{\ell}$ of size n is a linear code of minimum distance Δ

$$\circ |S(s^*, r^*) \cap C^*| = n^{1-o(1)}$$

- ⊚ $C^* \subseteq \mathbb{F}_q^{\ell}$ of size n is a linear code of minimum distance Δ
- \circ $s^* \in \mathbb{F}_q^{\ell}$ and $r^* < \Delta$ such that:
 - $\circ |S(s^*, r^*) \cap C^*| = n^{1-o(1)}$
 - $B(s^*, r^* 1) \cap C^* = \emptyset$

- ⊚ $C^* \subseteq \mathbb{F}_q^{\ell}$ of size n is a linear code of minimum distance Δ
- \circ $s^* \in \mathbb{F}_q^{\ell}$ and $r^* < \Delta$ such that:

$$|S(s^*, r^*) \cap C^*| = n^{1-o(1)}$$

$$|B(s^*, r^*) \cap C^*| = n^{1-o(1)}$$

$$|B(s^*, r^*) \cap C^*| = n^{\delta} :$$

We want a code-center pair (C^*, s^*) as follows:

- ⊚ $C^* \subseteq \mathbb{F}_a^{\ell}$ of size n is a linear code of minimum distance Δ

$$\circ |S(s^*, r^*) \cap C^*| = n^{1-o(1)}$$

$$\circ B(s^*, r^* - 1) \cap C^* = \emptyset$$

 \odot (C^* , s^*) can be found in poly(n) time

$$\mathcal{R} = \{ c \in C^* \mid ||c - s^*||_0 = r^* \}$$

$$\mathcal{R} = \{ c \in C^* \mid ||c - s^*||_0 = r^* \} \\
c_1 \quad c_2 \quad c_2 + s^* \\
c_i \quad c_j - c_i \in \mathcal{R} \quad c_j + s^* \\
c_n \quad c_n + s^* \\
C^* \quad C^* + s^* \\$$

Density of G*:
$$|E(G^*)| = n \cdot |\Re| = n^{2-o(1)}$$

$$\Re = \{c \in C^* \mid ||c - s^*||_0 = r^*\} \\
c_1 & c_1 + s^* \\
c_2 & c_2 + s^* \\
\vdots & \vdots & \vdots \\
c_i & c_j - c_i \in \Re \\
\vdots & \vdots & \vdots \\
\vdots &$$

Density of G*:
$$|E(G^*)| = n \cdot |\Re| = n^{2-o(1)}$$

Contact Dimension of G*: $cd_0(G^*) = \ell$ over alphabet \mathbb{F}_q

• Both are linear codes

- Both are linear codes
- $\operatorname{dist}(C^*) = \Delta$ and $\operatorname{dist}(\widetilde{C}^*) = r^* < \Delta$

- $\odot \ C^* \subseteq \widetilde{C}^* \subseteq \mathbb{F}_q^\ell$
 - Both are linear codes
 - o $\operatorname{dist}(C^*) = \Delta$ and $\operatorname{dist}(\widetilde{C}^*) = r^* < \Delta$
- ⊚ Pick an arbitrary $s^* \in \widetilde{C}^* \setminus C^*$

- $\odot \ C^* \subseteq \widetilde{C}^* \subseteq \mathbb{F}_q^\ell$
 - Both are linear codes
 - o $\operatorname{dist}(C^*) = \Delta$ and $\operatorname{dist}(\widetilde{C}^*) = r^* < \Delta$
- ⊚ Pick an arbitrary $s^* \in \widetilde{C}^* \setminus C^*$

o
$$B(s^*, r^* - 1) \cap C^* = \emptyset$$

- $\odot \ C^* \subseteq \widetilde{C}^* \subseteq \mathbb{F}_q^\ell$
 - Both are linear codes
 - $\operatorname{dist}(C^*) = \Delta$ and $\operatorname{dist}(\widetilde{C}^*) = r^* < \Delta$
- ⊚ Pick an arbitrary $s^* \in \widetilde{C}^* \setminus C^*$
 - ∘ $B(s^*, r^* 1) \cap C^* = \emptyset$
- ⊚ Need to show: $|S(s^*, r^*) \cap C^*|$ is large

- $\bigcirc C^* \subseteq \widetilde{C}^* \subseteq \mathbb{F}_q^{\ell}$
 - Both are linear codes
 - o $\operatorname{dist}(C^*) = \Delta$ and $\operatorname{dist}(\widetilde{C}^*) = r^* < \Delta$
- ⊚ Pick an arbitrary $s^* \in \widetilde{C}^* \setminus C^*$
 - $B(s^*, r^* 1) \cap C^* = \emptyset$
- ⊚ Need to show: $|S(s^*, r^*) \cap C^*|$ is large
 - Let T be number of codewords of \widetilde{C}^* of minimum weight

- - Both are linear codes
 - o $\operatorname{dist}(C^*) = \Delta$ and $\operatorname{dist}(\widetilde{C}^*) = r^* < \Delta$
- ⊚ Pick an arbitrary $s^* \in \widetilde{C}^* \setminus C^*$
 - $B(s^*, r^* 1) \cap C^* = \emptyset$
- ⊚ Need to show: $|S(s^*, r^*) \cap C^*|$ is large
 - Let T be number of codewords of \widetilde{C}^* of minimum weight
 - ∘ For a random $s \in \widetilde{C}^* \setminus C^*$: $\mathbb{E}[|B(s, r^*) \cap C^*|] \ge |C^*| \cdot \frac{T}{|\widetilde{C}^*|}$

- $\bigcirc C^* \subseteq \widetilde{C}^* \subseteq \mathbb{F}_q^\ell$
 - Both are linear codes
 - $\operatorname{dist}(C^*) = \Delta$ and $\operatorname{dist}(\widetilde{C}^*) = r^* < \Delta$
- ⊚ Pick an arbitrary $s^* \in \widetilde{C}^* \setminus C^*$
 - $B(s^*, r^* 1) \cap C^* = \emptyset$
- ⊚ Need to show: $|S(s^*, r^*) \cap C^*|$ is large
 - Let T be number of codewords of \widetilde{C}^* of minimum weight
 - ∘ For a random $s \in \widetilde{C}^* \setminus C^*$: $\mathbb{E}[|B(s, r^*) \cap C^*|] \ge |C^*| \cdot \frac{T}{|\widetilde{C}^*|}$

$$\frac{T}{|\widetilde{C}^*|}$$
 is large $\Longrightarrow |S(s^*, r^*) \cap C^*|$ is large

- © Exact Closest Pair
 - Reed Solomon Codes
 - Explicit center $\rightarrow x^{d+1}$

- Exact Closest Pair
 - Reed Solomon Codes
 - \circ Explicit center $\rightarrow x^{d+1}$
- \odot Approximate Closest Pair: Find dense G^* with small gap-cd₀(G^*)

- Exact Closest Pair
 - Reed Solomon Codes
 - \circ Explicit center $\rightarrow x^{d+1}$
- \odot Approximate Closest Pair: Find dense G^* with small gap-cd₀(G^*)
- ⊚ Construct X^* , $Y^* \subseteq \mathbb{F}_q^{\operatorname{cd}_0(G^*)}$, $\forall i, j \in [n]$ and some $h \in [\operatorname{cd}_0(G^*)]$:

$$i \neq j,$$
 $||x_i - x_j||_0, ||y_i - y_j||_0 > (1 + \delta) \cdot h$
 $(i, j) \notin E(G^*),$ $||x_i - y_j||_0 > h$
 $(i, j) \in E(G^*),$ $||x_i - y_j||_0 = h$

- Exact Closest Pair
 - Reed Solomon Codes
 - Explicit center $\rightarrow x^{d+1}$
- \odot Approximate Closest Pair: Find dense G^* with small gap-cd₀(G^*)
- ⊚ Construct X^* , $Y^* \subseteq \mathbb{F}_q^{\operatorname{cd}_0(G^*)}$, $\forall i, j \in [n]$ and some $h \in [\operatorname{cd}_0(G^*)]$:

$$i \neq j,$$
 $||x_i - x_j||_0, ||y_i - y_j||_0 > (1 + \delta) \cdot h$
 $(i, j) \notin E(G^*),$ $||x_i - y_j||_0 > h$
 $(i, j) \in E(G^*),$ $||x_i - y_j||_0 = h$

⊚ Translates to finding (C^*, \widetilde{C}^*) such that $\operatorname{dist}(C^*)/\operatorname{dist}(\widetilde{C}^*) \ge 1 + \delta$

- Exact Closest Pair
 - Reed Solomon Codes
 - Explicit center $\rightarrow x^{d+1}$
- \odot Approximate Closest Pair: Find dense G^* with small gap-cd₀(G^*)
- ⊚ Construct X^* , $Y^* \subseteq \mathbb{F}_q^{\operatorname{cd}_0(G^*)}$, $\forall i, j \in [n]$ and some $h \in [\operatorname{cd}_0(G^*)]$:

$$i \neq j,$$
 $||x_i - x_j||_0, ||y_i - y_j||_0 > (1 + \delta) \cdot h$
 $(i, j) \notin E(G^*),$ $||x_i - y_j||_0 > h$
 $(i, j) \in E(G^*),$ $||x_i - y_j||_0 = h$

- ⊚ Translates to finding (C^*, \widetilde{C}^*) such that $\operatorname{dist}(C^*)/\operatorname{dist}(\widetilde{C}^*) \ge 1 + \delta$
- Reed Solomon codes cannot have large T and give above gap.

Algebraic Geometric Codes:

Algebraic Geometric Codes:

⊚ We can choose (C^*, \widetilde{C}^*) such that

$$\circ \ \ |\widetilde{C}^*| = |C^*|^{1+\varepsilon}$$

Algebraic Geometric Codes:

- ⊚ We can choose (C^*, \widetilde{C}^*) such that
 - $\circ |\widetilde{C}^*| = |C^*|^{1+\varepsilon}$
 - $\circ \operatorname{dist}(C^*)/\operatorname{dist}(\widetilde{C}^*) \ge 1 + \delta$

Algebraic Geometric Codes:

- ⊚ We can choose (C^*, \widetilde{C}^*) such that
 - $\circ |\widetilde{C}^*| = |C^*|^{1+\varepsilon}$
 - \circ dist (C^*) /dist $(\widetilde{C}^*) \ge 1 + \delta$
- ⊚ $T \approx \sqrt{|\widetilde{C}^*|}$ (Ashikhmin-Barg-Vlăduţ'01, Vlăduţ'18)

Fine-Grained Complexity of Closest Pair

Theorem

Let $p \ge 1$. Assuming SETH, for every $\varepsilon > 0$,

- ⊚ no $n^{2-ε}$ time algorithm can solve CP in $ℓ_p$ -metric when $d = (\log n)^{Ω_ε(1)}$.
- ⊚ no $n^{1.5-ε}$ time algorithm can solve (1 + δ)-approximate CP in $ℓ_p$ -metric when $d = ω(\log n)$.

Open Problem 1

Can $(1 + \delta)$ -CP be solved in $n^{2-\varepsilon}$ time for some $\varepsilon > 0$ and every $\delta > 0$ in $\omega(\log n)$ dimensions?

Open Problem 1

Can
$$(1 + \delta)$$
-CP be solved in $n^{2-\varepsilon}$ time for some $\varepsilon > 0$ and every $\delta > 0$ in $\omega(\log n)$ dimensions?

Algebraic Geometric Codes with Better Parameters

Can
$$(1 + \delta)$$
-CP be solved in $n^{2-\varepsilon}$ time for some $\varepsilon > 0$ and every $\delta > 0$ in $\omega(\log n)$ dimensions?

- Algebraic Geometric Codes with Better Parameters
- Can construct gap-CP instance in high dimensions
 - Johnson-Lindenstrauss dimension reduction

Triangle Inequality Barrier for gap-BCP (Rubinstein'18):

Can we show assuming SETH, for some $\varepsilon > 0$, 3-BCP cannot be solved in $n^{1+\varepsilon}$ time in $\omega(\log n)$ dimensions in any metric?

Triangle Inequality Barrier for gap-BCP (Rubinstein'18):

Can we show assuming SETH, for some $\varepsilon > 0$, 3-BCP cannot be solved in $n^{1+\varepsilon}$ time in $\omega(\log n)$ dimensions in any metric?

★ $(1 + \delta)$ -CP can be solved in $n^{2-\tilde{\Theta}(\delta^{1/3})}$ time (Alman-Chan-Williams'16)

Triangle Inequality Barrier for gap-BCP (Rubinstein'18):

Can we show assuming SETH, for some $\varepsilon > 0$, 3-BCP cannot be solved in $n^{1+\varepsilon}$ time in $\omega(\log n)$ dimensions in any metric?

★ $(1 + \delta)$ -CP can be solved in $n^{2-\tilde{\Theta}(\delta^{1/3})}$ time (Alman-Chan-Williams'16)

Triangle Inequality Barrier for gap-BCP (Rubinstein'18):

Can we show assuming SETH, for some $\varepsilon > 0$, 3-BCP cannot be solved in $n^{1+\varepsilon}$ time in $\omega(\log n)$ dimensions in any metric?

★ $(1 + \delta)$ -CP can be solved in $n^{2-\tilde{\Theta}(\delta^{1/3})}$ time (Alman-Chan-Williams'16)

Triangle Inequality Barrier for gap-BCP (Rubinstein'18):

Can we show assuming SETH, for some $\varepsilon > 0$, 3-BCP cannot be solved in $n^{1+\varepsilon}$ time in $\omega(\log n)$ dimensions in any metric?

★ $(1 + \delta)$ -CP can be solved in $n^{2-\tilde{\Theta}(\delta^{1/3})}$ time (Alman-Chan-Williams'16)

★ Assuming SETH, no subquadratic time algorithm for (3 - o(1))-BCP in ℓ_{∞} -metric (David-K-Laekhanukit'18)

gap-CP

Triangle Inequality Barrier for gap-BOP (Rubinstein'18):

Can we show assuming SETH, for some $\varepsilon > 0$, 3-BOP cannot be solved in $n^{1+\varepsilon}$ time in $\omega(\log n)$ dimensions in any metric?

★ $(1 + \delta)$ -CP can be solved in $n^{2-\tilde{\Theta}(\delta^{1/3})}$ time (Alman-Chan-Williams'16)

* Assuming SETH, no subquadratic time algorithm for $\frac{(3-o(1))\text{-BOP}}{(2-o(1))\text{-CP}}$ in ℓ_{∞} -metric (David-K-Laekhanukit'18) (2 – o(1))-CP

Bichromatic Maximum Inner Product problem (BMIP)

Input:
$$A, B \subset \mathbb{R}^d$$
, $|A| = |B| = n$, Output: $a^* \in A$, $b^* \in B$, $\max_{\substack{a \in A \\ b \in B}} \langle a, b \rangle$

Bichromatic Maximum Inner Product problem (BMIP)

Input:
$$A, B \subset \mathbb{R}^d$$
, $|A| = |B| = n$, Output: $a^* \in A$, $b^* \in B$, $\max_{\substack{a \in A \\ b \in B}} \langle a, b \rangle$

Theorem (Abboud-Rubinstein-Williams'17)

Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve $2^{(\log n)^{1-o(1)}}$ -BMIP when $d = n^{o(1)}$.

Bichromatic Maximum Inner Product problem (BMIP)

Input:
$$A, B \subset \mathbb{R}^d$$
, $|A| = |B| = n$, Output: $a^* \in A$, $b^* \in B$, $\max_{\substack{a \in A \\ b \in B}} \langle a, b \rangle$

Theorem (Abboud-Rubinstein-Williams'17)

Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve $2^{(\log n)^{1-o(1)}}$ -BMIP when $d = n^{o(1)}$.

Maximum Inner Product problem (MIP)

Input:
$$A \subset \mathbb{R}^d$$
, $|A| = n$, Output: $a^*, b^* \in A$, $\max_{\substack{a,b \in A \\ a \neq b}} \langle a, b \rangle$

Bichromatic Maximum Inner Product problem (BMIP)

Input:
$$A, B \subset \mathbb{R}^d$$
, $|A| = |B| = n$, Output: $a^* \in A$, $b^* \in B$, $\max_{\substack{a \in A \\ b \in B}} \langle a, b \rangle$

Theorem (Abboud-Rubinstein-Williams'17)

Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve $2^{(\log n)^{1-o(1)}}$ -BMIP when $d = n^{o(1)}$.

Maximum Inner Product problem (MIP)

Input:
$$A \subset \mathbb{R}^d$$
, $|A| = n$, Output: $a^*, b^* \in A$, $\max_{\substack{a,b \in A \\ a \neq b}} \langle a, b \rangle$

Theorem (K-Manurangsi'18)

Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve $2^{(\log n)^{1-o(1)}}$ -MIP when $d = n^{o(1)}$.

$$\langle a_1, \ldots, a_k \rangle = \sum_{i \in [d]} \prod_{j \in [k]} a_j(i)$$

$$\langle a_1, \ldots, a_k \rangle = \sum_{i \in [d]} \prod_{j \in [k]} a_j(i)$$

$$\langle a_1,\ldots,a_k\rangle = \sum_{i\in[d]}\prod_{j\in[k]}a_j(i)$$

Assuming SETH, is k-MIP hard to approximate in time less than n^k ?

$$\langle a_1,\ldots,a_k\rangle = \sum_{i\in[d]} \prod_{j\in[k]} a_j(i)$$

Assuming SETH, is k-MIP hard to approximate in time less than n^k ?

 Leads to tight inapproximability of one-sided k-biclique problem (Lin'15)

$$\langle a_1, \ldots, a_k \rangle = \sum_{i \in [d]} \prod_{j \in [k]} a_j(i)$$

Assuming SETH, is k-MIP hard to approximate in time less than n^k ?

- Leads to tight inapproximability of one-sided k-biclique problem (Lin'15)
- Might lead to tight inapproximability of k-biclique problem

THANK YOU!