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Part 1

The Bird’s Perspective
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© What happens when d ~ polylog n?
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Input: A,B c R, |A|=|B|=n

Output: a* € A, b" € B, mil? lla = bll,
ae
beB

® Trivial algorithm: O(n2d)

© Computationally equivalent to determining Minimum
Spanning Tree in £,-metric [Agarwal-Edelsbrunner-
Schwarzkopf-Welzl'91, Krznaric-Levcopoulos-Nilsson’gg]

© What happens when d = polylog n?
What happens when d = w(1)?
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Bichromatic Closest Pair under Fine-Grained Lens

Strong Exponential Time Hypothesis (SETH)

For every ¢ > 0, there exists k(¢) € N, such that no algorithm
running in 2”(17¢) time can solve k-SAT on m variables.

Let p > 1. Assuming SETH, for every ¢ > 0, no n?>~¢ time algorithm
can solve:

© BCP in {,-metric when d = w(log n) [Alman-Williams’15].

© (1+ 0)-approximate BCP in £,-metric when d = w(log n)
[Rubinstein’18].

© BCP in {,-metric when d = 200og" ) TWilliams’18, Chen’18].



Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ¢ p-metric for all d.



Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ¢ p-metric for all d.

CP



Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ¢,-metric for all d.

CP



Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ¢,-metric for all d.

- BCP

CP



Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ¢ p-metric for all d.

= BCP

CP



Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ¢ p-metric for all d.

.

BCP

Io I

CP EEEEEEEEE




Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ¢ p-metric for all d.

.

BCP

Io I

CP (T I TIII]




Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ¢ p-metric for all d.

= BCP
O

CP (T I ITITIT]




Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ¢,-metric for all d.
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Contact Dimension of a Graph (cd,(G))

Smallest dimension for which we can realize:

lu—o|l,=1if (u,v) € G and [lu —v[|,>1 otherwise

Theorem (David-K-Laekhanukit’18)
CP is as hard as BCP in £,,-metric when d = Q(cd,(Kj,,)).

© cdy(Ky,n) = O(logn) for p > 2 [David-K-Laekhanukit'18]

© cdy(Ky,n) = O(n) [Maehara’g1]
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© Contract A and B such that me?x] lla; — bj||£ <a
ijeln

© Webuild (n,d +d*, A” U B’) instance of CP in £,-metric
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d ay| |dn Ay l’Jl bz bn
d* xl x2 ... xn yl yz ... y
’ ’ ’ ’ ’

ay aj a,, by by, - by

Points from same set:
lla; - a}IIZ = lla; — ajlly + llxi = xjll, > llxi = xjll, > 1+a
Points from different sets:

;= 051 = llai = byl + i = wlly =1+ llas = by} < 1+
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Theorem (David-K-Laekhanukit'18)

Let p > 2. Assuming SETH, for every ¢ > 0, no n?>~¢ time
algorithm can solve:

© CP in £,-metric when d = w(log n).

© (1 + 6)-approximate CP in £,-metric when d = w(log n).
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cdz(Ky,n) = ©(n)

BCP and CP are computationally equivalent in £,,-metric
when d = Q(cd,(Ky,,)).

Raised as open question recently:
© Abboud-Rubinstein-Williams’17y
© Williams’18
© David-K-Laekhanukit’18
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Theorem (K-Manurangsi’'18)
Let p > 1. Assuming SETH, for every ¢ > 0,

© no n*~¢ time algorithm can solve CP in £,-metric when
d = (log 1)),

® no n'°~¢ time algorithm can solve (1 + §)-approximate CP
in £y-metric when d = w(log n).
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Proof Sketch

©

©

©

(n,d, A, B) be instance of BCP in £,,-metric
Let d* = cdy(G1) = - -+ = cdp(Gy) and E(Gy), ..., E(Gy) C [n] x [n]
Vre[k], X, Y, cRY,|X,|=|Y,| =n,and Vi, ] € [n],
i+ ], [lx} — x;||p>1 and ||y} - y]r.||p>1
i, )2EGy),  lIxi-yilp,>1
(i, ) € EGr),  llxi = yillp,=1
Build k instances (1, d +d*, A} U B;) of CP in £,-metric (Y r € [k])
AL,=AoX,, BL=BoY,

Let (a;, bj) be solution to BCP

© There exists r* € [k], (i*, j*) € E(Gy)

Then (a’,, b}*) in r* instance (n,d + d*, A. UB/.) of CPis a
solution 13
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We find Gy, ..., Gt on V(K ,) where k = n°MD such that:
© E(G1) UE(G2) U -+ UE(Gg) = E(Ky,n)
© Vr € [k], cdy(G,) = polylog n, Vp > 1

© It suffices to find one G* on V (K, ,) such that

o |E(G")| = n20M

o cd,(G*) = polylog n, Vp > 1
© Tt suffices to find X*, Y* C {0, 1} where d* = cdy(G*)
© It suffices to find X*, Y* C [Fg/ where d’ =d*/q

fekF—1(0,...,0,1,0,...,0) € {0,1}1

th ey
f™ position "
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Construct a bipartite graph G* on V(K ,):
© Dense: |E(G*)| = n27oM
© Low Contact Dimension: cdy(G*) = d* = polylog n
= Construct X*, Y* C [F;*, Vi, j € [n] and some & € [d"]:
i # ], llxi = xjllo>h and [|y; — yjllo>h
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15



New Agenda

GOAL

Construct a bipartite graph G* on V(K ,):
© Dense: |E(G*)| = n2°M
(log n)loglogn
© Low Contact Dimension: cdy(G*) = d* =pebdesw
= Construct X*, Y* C [F;*, Vi, j € [n] and some & € [d"]:

i#], llxi = xjllo>h and ||y; = yjllo>h
(i, /) ¢ E(GY),  llxi = yjllo>h
(i,j) € E(G"), |lxi = yjllo=h

15



New Agenda

GOAL

Construct a bipartite graph G* on V(K ,):
© Dense: |E(G*)| = n2°M
(log n)loglogn
© Low Contact Dimension: cdy(G*) = d* =pebdesw
= Construct X*, Y* C [F;*, Vi, j € [n] and some & € [d"]:

i#], llxi = xjllo>h and ||y; = yjllo>h
(i, /) ¢ E(GY),  llxi = yjllo>h
(i,j) € E(G"), |lxi = yjllo=h

Contact Dimension of a Random Graph is Q(n)

15



Construction of G*

Polynomials are our friends.

— TCS Folklore
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Construction of G*

© P :=set of degree d univariate polynomials over [F67
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Construction of G*

© P :=set of degree d univariate polynomials over [,
© Q= {x™! +p(x) | p(x) € P}
© n:=q"=|2|=q|
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o n:= g™ = || = ||

© R :=set of degree d + 1 polynomials with all distinct roots
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Construction of G*

© P :=set of degree d univariate polynomials over [,

© Q= {x™! +p(x) | p(x) € P}

@ n:=q"=|P|=|q

© R :=set of degree d + 1 polynomials with all distinct roots

Pix) @ @ 1+ pi(x)
pa(x) @ @ !+ py(x)

. xd+1+ ) :
pi(x) @ PO -piyeg *
E : xd+1+p]-(x)

Pu(x) @ ® x4 p,(x)
95 @ 16



Density of G*

© Setting of parameters:

logn
= O((1 loglogn , d=0
7= Ologm (g
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© []= (1)

o Everydistinctay,...,agn €= [] (x—a;))eR
ie[d+1]

® For all p(x) € 2, Number of Neighbors of p(x) = (7))

o Fix p(x) € P and r(x) € R = (p(x), r(x) + p(x)) € E(G)
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Density of G*

© Setting of parameters:

logn
= O((1 loglogn , d=0
7= Ologm (g

© []= (1)

o Everydistinctay,...,agn €= [] (x—a;))eR
ie[d+1]

® For all p(x) € 2, Number of Neighbors of p(x) = (7))
o Fix p(x) € P and r(x) € R = (p(x), r(x) + p(x)) € E(G)

© Density of G™:
d+1 2
* _ q q h — 2= (l)
|E(G )|_|gbl(d+1) > n.(d+1)d+1 > logn =n ’
(log 7’1) (loglog n)?

17



Contact Dimension of G*

© For every p(x) € 2 we have following point in X* C [Fg :

(p(0),p(1),...,p(q - 1)
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Contact Dimension of G*

© For every p(x) € 2 we have following point in X* C [Fg :
(p0),p(1),...,p(q-1)
© For every x¥*1 4 p(x) € @ we have following point in Y™ C IF{;7 :

(0714 p(©), 1 4 p(1), .., (g — Y™ + p(q - 1))
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Contact Dimension of G*

© For every p(x) € 2 we have following point in X* C [Fg :
(p(0), p(1), ..., p(q = 1)
© For every x¥*1 4 p(x) € @ we have following point in Y™ C IF{;7 :
(071 + p(0), 1%+ p(1), ..., (g = ™! + p(g - 1)

© Difference of two points in X* (similarly in Y*) is evaluation of a
degree d polynomial over [;:
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Contact Dimension of G*

© For every p(x) € 2 we have following point in X* C [Fg :
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Contact Dimension of G*

© For every p(x) € 2 we have following point in X* C [Fg :
(p(0), p(1), -, p(q =1)
© For every x%*! + p(x) € @ we have following point in Y* C IF:; :
(071 + p(0), 1%+ p(1), ..., (g = ™! + p(g - 1)

© Difference of two points in X* (similarly in Y*) is evaluation of a
degree d polynomial over [;:

Vi, jen],i#j, llxi—xjllo=q—dand |ly; — yjllo=>q —d

@ Forany (i, j) € E(G*) we have x*! + p;(x) — pi(x) has d + 1
distinct roots:

VI/] € [n]/ (l/ ]) € E(G*)/ ”xi - yjHO:q -d-1

18



Proof Summary

© A bipartite graph G* on V(K ,):
* Dense: |[E(G*)| = n?>°M

* Low Contact Dimension: cdy(G*) = g = (log n)'°81°8" over F;
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* E(G1) UE(G2) U - -+ U E(Gk) = E(Kp,n)

* Vr e [k], cdp(Gr) =g, Yp > 1
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— : CP instances
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Proof Summary

© A bipartite graph G* on V(K ,):
* Dense: |[E(G*)| = n?~¢
* Low Contact Dimension: cdy(G*) = g = (logn)°V/¢") over F,
© V(G") can be realized as points in {0, 137
©® Construct k = O(n") isomorphic copies Gi, ..., Gx of G
* E(G1) UE(G2) U - -+ U E(Gk) = E(Kp,n)
* Vr e [k], cdp(Gr) =g, Vp >1

(AoXy1,BoYy,n,d+q?

(A.B,n.d) (AoXs,BoYy,n,d+q?)
— : CP instances

BCP instance

(AOXk,BOYk,Tl,d+q2) 19



Closest Pair in Euclidean metric

Theorem (K-Manurangsi’'18)
Let p > 1. Assuming SETH, for every ¢ > 0,

© no n*~¢ time algorithm can solve CP in £,-metric when
d = (log 1)),

® no n'°~¢ time algorithm can solve (1 + §)-approximate CP
in £y-metric when d = w(log n).

20



CYRELCEWETE

Foreveryp > 1,

© Closest Pair problem in £,-metric cannot be solved! in
subquadratic (in ) time when d = (log n)?().

LConditions apply.
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CYRELCEWETE

Foreveryp > 1,
© Closest Pair problem in £,-metric cannot be solved! in

subquadratic (in 7) time when d = (log 1)),

© Closest Pair and Bichromatic Closest Pair in {p-metric are
computationally equivalent? when d = (log 1)1,

LConditions apply.

25ee footnote 1.
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CYRELCEWETE

Foreveryp > 1,

© Closest Pair problem in £,-metric cannot be solved! in
subquadratic (in 7) time when d = (log 1)),

© Closest Pair and Bichromatic Closest Pair in {p-metric are
computationally equivalent? when d = (log 1)1,

There is a dense bipartite graph with low contact dimension

LConditions apply.

25ee footnote 1.
21



Part 11

The Frog’s Perspective



Fine-Grained Complexity of Closest Pair

Let p > 1. Assuming SETH, for every ¢ > 0,

© no n*~¢ time algorithm can solve CP in £,-metric when
d = (log 1)),

® no n'°~¢ time algorithm can solve (1 + §)-approximate CP
in £y-metric when d = w(log n).
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Abstraction via Error Correcting Codes

We want a code-center pair (C*, s*) as follows:
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Abstraction via Error Correcting Codes

We want a code-center pair (C*, s*) as follows:
© C* C [Fq[ of size n is a linear code of minimum distance A

©® s* e [F; and r*<A such that:
o |S(s*, r*) N C*| = nl—oM
o B(s*,=1)NC*=0

If B(s*, )N C*| = n® :
Locally Dense Codes
(Dumer-Miccancio-Sudan’o3)
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Abstraction via Error Correcting Codes

We want a code-center pair (C*, s*) as follows:
© C* C [Fq[ of size n is a linear code of minimum distance A

©® s* e [F; and r*<A such that:
o |S(s*, )N C*| = n1—o)
o B(s*,=1)NC*=0

© (C*,s") can be found in poly(n) time

24



Construction of G* from (C*, s*)

R={ceC [llc=s"llo=r"}
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Construction of G* from (C*, s*)

R={ceC [llc=s"llo=r"}

‘1 @ ® ¢ +5°
@ ® o+t
¢i @
: @ ¢i+s
Cn ' ‘ Ccy + 57
Cr C +5s"
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Construction of G* from (C*, s*)

R={ceC [llc=s"llo=r"}

1 @ ® ¢ +5°
@ ® o+t
Ci
. *
cj+s
Cn ' ‘ Ccy + 57
Cr C +5s"

25



Construction of G* from (C*, s*)

R={ceC|lle=so=r"}

G @ ® ci+5
€2 . . C2+S’P
Ci

. *
C]+S

tn @ ® c, +s"
c C"+s”

Density of G*: |E(G*)|=n - |R| = n2-o(1)
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Construction of G* from (C*, s*)

R={ceC [llc=s"llo=r"}

1 @ ® ¢ +5°
@ ® o+t

Ci

. *
C]+S

Cn ' Q Cp+58”
c C"+s”
Density of G*: |E(G*)|=n - |R| = n2-o(1)

Contact Dimension of G*: cdo(G*) = ¢ over alphabet [; 25



Finding a center

© C'cCCF
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Finding a center

© C'cCCF
o Both are linear codes
o dist(C*) = A and dist(C*) = r* < A
© Pick an arbitrary s* € C*\ C*
o B(s*,r"=1)NnC* =0
© Need to show: |S(s*, r*) N C*| is large
o Let T be number of codewords of C* of minimum weight

o Forarandoms € C*\ C*: E[|B(s, r*) N C*|] = |C*| - ‘g—‘

T

= islarge = |S(s*,r*) N C*|is large
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Approximate Closest Pair

©® Exact Closest Pair

o Reed Solomon Codes

o Explicit center — x4*1
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o Reed Solomon Codes

o Explicit center — x4*1

© Approximate Closest Pair: Find dense G* with small gap-cdo(G*)

©® Construct X*, Y* C F;d‘)(c*), Vi, j € [n] and some & € [cdy(G")]:

i#], llxi = xjllo, lyi = yjllo > (1 +6)- h
(i,j)) ¢ E(G"),  llxi—yjllo>h
(i,j) € E(G"),  llxi—yjllo=h
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Approximate Closest Pair

©® Exact Closest Pair

o Reed Solomon Codes

o Explicit center — x4*1

© Approximate Closest Pair: Find dense G* with small gap-cdo(G*)

©® Construct X*, Y* C FCdO(G*), Vi, j € [n] and some h € [cdy(G*)]:
q ]

i#], llxi = xjllo, lyi = yjllo > (1 +6)- h
(i,j)) ¢ E(G"),  llxi—yjllo>h
(i,j) € E(G"),  llxi—yjllo=h

© Translates to finding (C~, (~f*) such that dist(C*)/ dist(é*) >1+0
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Approximate Closest Pair

©® Exact Closest Pair

o Reed Solomon Codes
d+1

o Explicit center — x
© Approximate Closest Pair: Find dense G* with small gap-cdo(G*)
©® Construct X*, Y* C F;dO(G*), Vi, j € [n] and some & € [cdy(G")]:

i#] llxi = xjllo, llyi = yjllo > (1 +06) - h
(i, ) ¢EG),  lxi—yjllo>h
(i,)) € EGY),  llxi-yjllo=h
© Translates to finding (C~, (~f*) such that dist(C*)/dist(C*) > 1 + &

©® Reed Solomon codes cannot have large T and give above gap.

27



Approximate Closest Pair

Algebraic Geometric Codes:
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Approximate Closest Pair

Algebraic Geometric Codes:

©® We can choose (C¥, 6*) such that
o |C'|=|Cr[t*e
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Approximate Closest Pair

Algebraic Geometric Codes:

©® We can choose (C¥, 6*) such that
o |C|=|C
o dist(C*)/dist(C*) > 1+ 6
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Approximate Closest Pair

Algebraic Geometric Codes:

©® We can choose (C¥, 6*) such that
o |C|=|C
o dist(C*)/dist(C*) > 1+ 6

© T x4/ |6*| (Ashikhmin-Barg-Vladut'o1, Vladut'18)

28



Fine-Grained Complexity of Closest Pair

Let p > 1. Assuming SETH, for every ¢ > 0,

© no n*~¢ time algorithm can solve CP in £,-metric when
d = (log 1)),

® no n'°~¢ time algorithm can solve (1 + §)-approximate CP
in £y-metric when d = w(log n).

29



Open Problem 1

Can (1 + 6)-CP be solved in n2~¢ time for some ¢ > 0
and every 0 > 0 in w(log n) dimensions?
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Open Problem 1

Can (1 + 6)-CP be solved in n2~¢ time for some ¢ > 0
and every 0 > 0 in w(log n) dimensions?

© Algebraic Geometric Codes with Better Parameters

© Can construct gap-CP instance in high dimensions

o Johnson-Lindenstrauss dimension reduction
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Open Problem 2

Triangle Inequality Barrier for gap-BCP (Rubinstein’18):

Can we show assuming SETH, for some ¢ > 0, 3-BCP cannot be
solved in n1*¢ time in w(log 1) dimensions in any metric?
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Triangle Inequality Barrier for gap-BCP (Rubinstein’18):

Can we show assuming SETH, for some ¢ > 0, 3-BCP cannot be
solved in n1*¢ time in w(log 1) dimensions in any metric?

* (14 06)-CP can be solved in n2-00") time (Alman-Chan-Williams’16)

a v b
:><:
a’ X b’
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Open Problem 2

Triangle Inequality Barrier for gap-BCP (Rubinstein’18):

Can we show assuming SETH, for some ¢ > 0, 3-BCP cannot be
solved in n1*¢ time in w(log 1) dimensions in any metric?

*(1+6}CPcanbesoNedh1n}@®m)ﬁnm(AhnmpChanJVﬂhmn§1@

t(a) 7(b)
w(a’) :><: (V')
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Open Problem 2

Triangle Inequality Barrier for gap-BCP (Rubinstein’18):

Can we show assuming SETH, for some ¢ > 0, 3-BCP cannot be
solved in n1*¢ time in w(log 1) dimensions in any metric?

* (14 06)-CP can be solved in n2-00") time (Alman-Chan-Williams’16)

(a) (b)
(a’) :><: (b")

>3

* Assuming SETH, no subquadratic time algorithm for (3 — 0(1))-BCP

in {e-metric (David-K-Laekhanukit'18)
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Open Problem 2

gap-CP
Triangle Inequality Barrier for gep=B€f= (Rubinstein’18):
2-CP
Can we show assuming SETH, for some ¢ > 0, 9=B€#= cannot be
solved in n1*¢ time in w(log 1) dimensions in any metric?

* (14 06)-CP can be solved in n2-00") time (Alman-Chan-Williams’16)

t(a) 7(b)
w(a’) :><: (V')

>3

* Assuming SETH, no subquadratic time algorithm for S==—wtt=BS=

in {e-metric (David-K-Laekhanukit'18) (2-0(1))-CP
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Open Problem 3

Bichromatic Maximum Inner Product problem (BMIP)

Input: A, B ¢ R?,|A| = |B| =1, Output: a* € A, b* € B, makx {a,b)
ae
beB
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Input: A, B ¢ R?,|A| = |B| =1, Output: a* € A, b* € B, makx {a,b)
beB
Theorem (Abboud-Rubinstein-Williams’17)

Assuming SETH, for every ¢ > 0, no n%~¢ time algorithm can solve
2008 _BMIP when d = n°®).
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Bichromatic Maximum Inner Product problem (BMIP)

Input: A, B ¢ R?,|A| = |B| =1, Output: a* € A, b* € B, makx {a,b)
ae
beB

Theorem (Abboud-Rubinstein-Williams’17)

Assuming SETH, for every ¢ > 0, no n%~¢ time algorithm can solve
2008 _BMIP when d = n°®).

Maximum Inner Product problem (MIP)

Input: A C R?, |A| = n, Output: a*,b" € A, rr};ax {a,b)
a,beA
a#b
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Open Problem 3

Bichromatic Maximum Inner Product problem (BMIP)

Input: A, B ¢ R?,|A| = |B| =1, Output: a* € A, b* € B, makx {a,b)
ae
beB

Theorem (Abboud-Rubinstein-Williams’17)

Assuming SETH, for every ¢ > 0, no n%~¢ time algorithm can solve
2008 _BMIP when d = n°®).

Maximum Inner Product problem (MIP)

Input: A C R?, |A| = n, Output: a*,b" € A, rr};aﬁ {a,b)
s
Theorem (K-Manurangsi’'18)

Assuming SETH, for every ¢ > 0, no n?~¢ time algorithm can solve

20log )"V _pip when d = 17°(0,
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Open Problem 3

© th1,...,€lk GRd,

(1,...,a0) = Z [] a6

d] jelk]
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© Leads to tight inapproximability of one-sided k-biclique problem
(Lin’15)
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Open Problem 3

© th1,...,€lk GRd,

(1,...,a0) = Z [] a6

d] jelk]

® k-chromatic MIP is hard to approximate in time less than ¥
assuming SETH (K-Laekhanukit-Manurangsi'18)

Assuming SETH, is k-MIP hard to approximate in time less than n*?

© Leads to tight inapproximability of one-sided k-biclique problem
(Lin’15)

© Might lead to tight inapproximability of k-biclique problem
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