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PART I

An Oversimplfied Overview
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Caucasian African American

fuccessful /Successful

Sum Max

Max Sum

Decision Making System using Sum formula:
Reinforces Bias against African Americans



PART II

The Real Deal
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But what is Linear Regression !?

Alice Bob
9 Math 10
9 Science 7

3 X Math + Science

Linear Regression
Learn Best Weighted Sum Formula
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© National Education Longitudinal Study of 1988
@ Students entering 8" grade

© Follow up in 1990, 1992, 1994, 2000

© Successful student: College GPA > 3.25

© Caucasian: 4173 (48.62% successful)
African American: 442 (30.88% successful)
Hispanics: 506 (39.14% successful)

Affirmative Action is practiced in College Admission
in the US since 1970s
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Number of Influential Features

o
R
——  African Americans

..... Cavasiars — 9% and 11" grades,
~ Hisparics Standardized tests,

Extra Curriculars, ...

— Caucasians have few
influential features

Number of features

—  The regressor formula
of minority groups
is complex

Threshold
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Relative % change in p"‘ score from p:

co-norm over 1-norm

- African Americans

—— Caucasians

—  Hispanics "prefer" 1-norm
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Not a solution

-8
1

-10

11



Putting things Together

Each minority group must have its own predictor

(formalized in Kleinberg-Ludwig-Mullainathan-Rambachan "18)

12



Putting things Together

Each minority group must have its own predictor

(formalized in Kleinberg-Ludwig-Mullainathan-Rambachan "18)

Predictor must be sensitive to the geometry of its group

12



Putting things Together

Each minority group must have its own predictor

(formalized in Kleinberg-Ludwig-Mullainathan-Rambachan "18)

Predictor must be sensitive to the geometry of its group

Linear Regression cannot capture
the complexity of minority group data
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