Fairness in Decision Making Is Linear Regression Fair?

Karthik C. S. (New York University)

Joint work with

 Vincent Cohen-Addad
 Claire Mathieu
 Namrata

 (Google Research)
 (CNRS, Université de Paris)
 (University of Warwick)

PART I An Oversimplfied Overview

Alice Bob

Alice

Alice

Alice

2

Decision Making System using Sum formula: Reinforces Bias against African Americans

PART II The Real Deal

Setting: Decision Making

Applications

Setting: Decision Making

Applications

Admission Committee

Setting: Decision Making

Applications

Historical Data

Admission Committee

But what is Linear Regression !?

But what is Linear Regression !?

But what is Linear Regression !?

National Education Longitudinal Study of 1988

- National Education Longitudinal Study of 1988
- ◎ Students entering 8th grade
- © Follow up in 1990, 1992, 1994, 2000

- National Education Longitudinal Study of 1988
- ◎ Students entering 8th grade
- © Follow up in 1990, 1992, 1994, 2000
- ◎ Successful student: College GPA > 3.25

- National Education Longitudinal Study of 1988
- ◎ Students entering 8th grade
- Sollow up in 1990, 1992, 1994, 2000
- ◎ Successful student: College GPA > 3.25
- Caucasian: 4173 (48.62% successful)
 African American: 442 (30.88% successful)
 Hispanics: 506 (39.14% successful)

- National Education Longitudinal Study of 1988
- ◎ Students entering 8th grade
- Sollow up in 1990, 1992, 1994, 2000
- ◎ Successful student: College GPA > 3.25
- Caucasian: 4173 (48.62% successful)
 African American: 442 (30.88% successful)
 Hispanics: 506 (39.14% successful)

Affirmative Action is practiced in College Admission in the US since 1970s

\rightarrow 9th grade Math vs. College success

- \rightarrow 9th grade Math vs. College success
- \rightarrow "You are good at math You will do well"

8

8

8

→ 9th and 11th grades, Standardized tests, Extra Curriculars,...

9th and 11th grades, Standardized tests, Extra Curriculars, . . .

9th and 11th grades, Standardized tests, Extra Curriculars, ...

- 9th and 11th grades, Standardized tests, Extra Curriculars, . . .
- → Caucasians have few influential features

- 9th and 11th grades, Standardized tests, Extra Curriculars, . . .
- → Caucasians have few influential features
- → The regressor formula of minority groups is complex

$\rightarrow (x, y) \text{ is a point in plane}$ $p^{\text{th}} \text{ norm of } (x, y) \text{ is}$ $(|x|^p + |y|^p)^{1/p}$

 $\rightarrow (x, y) \text{ is a point in plane}$ $p^{\text{th}} \text{ norm of } (x, y) \text{ is}$ $(|x|^p + |y|^p)^{1/p}$

 $\rightarrow \qquad 1\text{-norm is } |x|+|y|$ 2-norm is standard distance ∞ -norm is max(|x|, |y|)

→ From Geometric Insights to Algebraic Tools

→ From Geometric Insights to Algebraic Tools

 \rightarrow Training/Test: 50/50

From Geometric Insights to Algebraic Tools

From Geometric Insights to Algebraic Tools

Training/Test: 50/50

From Geometric Insights to Algebraic Tools

 \rightarrow

→ Poly Regression captures more complex relationships

From Geometric Insights to Algebraic Tools

 \rightarrow

- → Poly Regression captures more complex relationships
 - → A proof of concept Not a solution

Putting things Together

Each minority group must have its own predictor (formalized in Kleinberg-Ludwig-Mullainathan-Rambachan '18)

Each minority group must have its own predictor (formalized in Kleinberg-Ludwig-Mullainathan-Rambachan '18)

Predictor must be sensitive to the geometry of its group

Each minority group must have its own predictor (formalized in Kleinberg-Ludwig-Mullainathan-Rambachan '18)

Predictor must be sensitive to the geometry of its group

Linear Regression cannot capture the complexity of minority group data

THANK YOU!