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PART I
An Oversimplfied Overview
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A Hypothetical Situation: Extrapolation
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PART II
The Real Deal
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Setting: Decision Making

Applications
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Admission Committee
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But what is Linear Regression !?
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Data

} National Education Longitudinal Study of 1988

} Students entering 8th grade

} Follow up in 1990, 1992, 1994, 2000

} Successful student: College GPA > 3.25

} Caucasian: 4173 (48.62% successful)
African American: 442 (30.88% successful)
Hispanics: 506 (39.14% successful)

Affirmative Action is practiced in College Admission
in the US since 1970s
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Fitting to a Line

→ 9th grade Math vs.
College success

→ "You are good at math
You will do well"

→ What happens if we
admit top 10% students?

→ Error is not Uniform
Across Race groups
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Number of Influential Features

→ 9th and 11th grades,
Standardized tests,
Extra Curriculars, . . .

→ Caucasians have few
influential features

→ The regressor formula
of minority groups

is complex
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ℓ?-norm Rankings

→ (G, H) is a point in plane
?th norm of (G, H) is
(|G |? + |H |?)1/?

→ 1-norm is |G |+|H |
2-norm is standard distance
∞-norm is max(|G |, |H |)

→ African Americans prefer
∞-norm over 1-norm

→ Hispanics "prefer" 1-norm
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Polynomial Regression

→ From Geometric Insights
to Algebraic Tools

→ Training/Test : 50/50

→ Poly Regression captures
more complex relationships

→ A proof of concept
Not a solution
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Putting things Together

Each minority group must have its own predictor
(formalized in Kleinberg-Ludwig-Mullainathan-Rambachan ’18)

Predictor must be sensitive to the geometry of its group

Linear Regression cannot capture
the complexity of minority group data
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