Fairness in Decision Making
 Is Linear Regression Fair?

Karthik C. S.
(New York University)
Joint work with

Vincent Cohen-Addad

Claire Mathieu

Namrata

PART I

An Oversimplfied Overview

A Hypothetical Situation

Alice Bob

A Hypothetical Situation

Sum: 17

A Hypothetical Situation

A Hypothetical Situation

A Hypothetical Situation

A Hypothetical Situation

Alice Bob

10
$9 \quad$ Science 7

Sum: 17
Max: 10

A Hypothetical Situation: Extrapolation

Caucasian
Successful

A Hypothetical Situation: Extrapolation

Decision Making System using Sum formula: Reinforces Bias against African Americans

PART II

The Real Deal

Setting: Decision Making

Applications

Setting: Decision Making

Applications

Admission Committee

Setting: Decision Making

Historical Data

Admission Committee

But what is Linear Regression !?

But what is Linear Regression !?

But what is Linear Regression !?

$3 \times$ Math + Science
Linear Regression
Learn Best Weighted Sum Formula

Data

© National Education Longitudinal Study of 1988

Data

© National Education Longitudinal Study of 1988
© Students entering $8^{\text {th }}$ grade
© Follow up in 1990, 1992, 1994, 2000

Data

© National Education Longitudinal Study of 1988
© Students entering $8^{\text {th }}$ grade
© Follow up in 1990, 1992, 1994, 2000
© Successful student: College GPA > 3.25

Data

© National Education Longitudinal Study of 1988
© Students entering $8^{\text {th }}$ grade
© Follow up in 1990, 1992, 1994, 2000
© Successful student: College GPA > 3.25
© Caucasian: 4173 (48.62\% successful) African American: 442 (30.88\% successful) Hispanics: 506 (39.14\% successful)

Data

© National Education Longitudinal Study of 1988
© Students entering $8^{\text {th }}$ grade
© Follow up in 1990, 1992, 1994, 2000
© Successful student: College GPA > 3.25
© Caucasian: 4173 (48.62\% successful) African American: 442 (30.88\% successful)
Hispanics: 506 (39.14\% successful)

Affirmative Action is practiced in College Admission in the US since 1970s

Fitting to a Line

$$
\rightarrow \quad 9^{\text {th }} \text { grade Math vs. }
$$

College success

Fitting to a Line

$$
\rightarrow \quad \text { 9 }^{\text {th }} \text { grade Math vs. }
$$

$\rightarrow \quad$ "You are good at math You will do well"

Fitting to a Line

Number of Influential Features

$\rightarrow \quad 9^{\text {th }}$ and $11^{\text {th }}$ grades, Standardized tests,
Extra Curriculars, ...

Number of Influential Features

ℓ_{p}-norm Rankings

$$
\begin{gathered}
\rightarrow \quad(x, y) \text { is a point in plane } \\
p^{\text {th }} \text { norm of }(x, y) \text { is } \\
\left(|x|^{p}+|y|^{p}\right)^{1 / p}
\end{gathered}
$$

ℓ_{p}-norm Rankings

$\rightarrow \quad(x, y)$ is a point in plane $p^{\text {th }}$ norm of (x, y) is

$$
\left(|x|^{p}+|y|^{p}\right)^{1 / p}
$$

$\rightarrow \quad$ 1-norm is $|x|+|y|$
2-norm is standard distance ∞-norm is $\max (|x|,|y|)$

ℓ_{p}-norm Rankings

$\rightarrow \quad(x, y)$ is a point in plane $p^{\text {th }}$ norm of (x, y) is

$$
\left(|x|^{p}+|y|^{p}\right)^{1 / p}
$$

$\rightarrow \quad$ 1-norm is $|x|+|y|$
2-norm is standard distance ∞-norm is $\max (|x|,|y|)$

ℓ_{p}-norm Rankings

$\rightarrow \quad(x, y)$ is a point in plane $p^{\text {th }}$ norm of (x, y) is

$$
\left(|x|^{p}+|y|^{p}\right)^{1 / p}
$$

$\rightarrow \quad$ 1-norm is $|x|+|y|$
2-norm is standard distance ∞-norm is $\max (|x|,|y|)$

ℓ_{p}-norm Rankings

$\rightarrow \quad(x, y)$ is a point in plane $p^{\text {th }}$ norm of (x, y) is

$$
\left(|x|^{p}+|y|^{p}\right)^{1 / p}
$$

$\rightarrow \quad$ 1-norm is $|x|+|y|$
2-norm is standard distance ∞-norm is $\max (|x|,|y|)$
\rightarrow African Americans prefer ∞-norm over 1-norm

ℓ_{p}-norm Rankings

$\rightarrow \quad(x, y)$ is a point in plane $p^{\text {th }}$ norm of (x, y) is

$$
\left(|x|^{p}+|y|^{p}\right)^{1 / p}
$$

$\rightarrow \quad$ 1-norm is $|x|+|y|$
2-norm is standard distance ∞-norm is $\max (|x|,|y|)$
\rightarrow African Americans prefer ∞-norm over 1-norm
\rightarrow Hispanics "prefer" 1-norm

Polynomial Regression

$\rightarrow \quad$ From Geometric Insights
to Algebraic Tools

Polynomial Regression

$\rightarrow \quad$ From Geometric Insights to Algebraic Tools

\rightarrow Training/Test: 50/50

Polynomial Regression

$\rightarrow \quad$ From Geometric Insights to Algebraic Tools

\rightarrow Training/Test: 50/50

Polynomial Regression

Polynomial Regression

$\rightarrow \quad$ From Geometric Insights
to Algebraic Tools
\rightarrow Training/Test : 50/50
$\rightarrow \quad$ Poly Regression captures more complex relationships

Polynomial Regression

Putting things Together

> Each minority group must have its own predictor (formalized in Kleinberg-Ludwig-Mullainathan-Rambachan '18)

Putting things Together

> Each minority group must have its own predictor (formalized in Kleinberg-Ludwig-Mullainathan-Rambachan '18)

Predictor must be sensitive to the geometry of its group

Putting things Together

Each minority group must have its own predictor (formalized in Kleinberg-Ludwig-Mullainathan-Rambachan '18)

Predictor must be sensitive to the geometry of its group

Linear Regression cannot capture the complexity of minority group data

THANK
 YOU!

