Hardness of Approximation meets Parameterized Complexity

Karthik C. S.

New York University

December 28, 2020

Karthik C. S. (NYU)

Parameterized Inapproximability

 $\exists \rightarrow$ December 28, 2020 1/30

Image: A match a ma

Э

DQC

- Day 1: The Setting
- Day 2: Gap Creation
- Day 3: Applications

E

590

- Recap
- MinLabel
- Gap Translation to Set Cover

3

ヘロト 人間 ト 人団 ト 人団 ト

- Recap
- MinLabel
- Gap Translation to Set Cover
- Part 2: Hardness of Biclique
 - Recap
 - Hardness of Biclique

3

- Recap
- MinLabel
- Gap Translation to Set Cover
- Part 2: Hardness of Biclique
 - Recap
 - Hardness of Biclique

Part 3: Hardness of Approximating Clique

- Recap
- MinLabel
- Gap Translation to Set Cover
- Part 2: Hardness of Biclique
 - Recap
 - Hardness of Biclique
- Part 3: Hardness of Approximating Clique
- Part 4: Selected Open Problems

< ロ ト < 同 ト < 三 ト < 三 ト

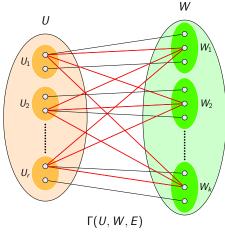
Part 1

Hardness of Approximating Set Cover

Karthik C. S. (NYU)

Parameterized Inapproximability

MaxCover: Recap



Determine if $MaxCover(\Gamma) = 1$ or $MaxCover(\Gamma) \le s$ Each W_i is a Right Super Node Each U_i is a Left Super Node

 $S \subseteq W$ is a labeling of W if $\forall i \in [k], |S \cap W_i| = 1$

 $S \text{ covers } U_i \text{ if } \\ \exists u \in U_i, \ \forall v \in S, (u, v) \in E \end{cases}$

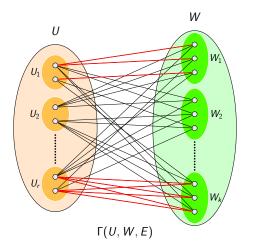
 $MaxCover(\Gamma, S) = Fraction of$ $U_i's covered by S$

 $MaxCover(\Gamma) = \max_{S} MaxCover(\Gamma, S)$

イロト イボト イヨト イヨト

3

MaxCover: Projection Property



Γ has projection property: For every U_i and W_j , Induced subgraph of (U_i, W_j) is:

- complete bipartite graph (i.e., irrelevant), or,
- $\forall w \in W_j, \deg(w)=1$

< □ > < @ >

(i.e., projection)

 $\begin{array}{l} \mbox{MaxCover with projection property} \\ \mbox{is W[1]-Hard} \end{array}$

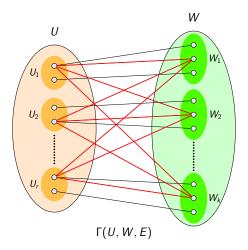
Karthik C. S. (NYU)

Inapproximability of MaxCover using Reed Solomon Codes There is a FPT reduction from MaxCover instance $\Gamma_0 = \begin{pmatrix} U_0 = \bigcup_{j=1}^r U_j^0, W = \bigcup_{j=1}^k W_i, E_0 \end{pmatrix}$ with projection property to a MaxCover instance $\Gamma = \begin{pmatrix} U = \bigcup_{j=1}^q U_j, W = \bigcup_{j=1}^k W_i, E \end{pmatrix}$ such that • If MaxCover(Γ_0) = 1 then MaxCover(Γ) = 1

- If $MaxCover(\Gamma_0) < 1$ then $MaxCover(\Gamma) \leq \frac{\log_q |U_0|}{q}$
- $|\Gamma| = \tilde{O}(q^r \cdot |W| \cdot \log |U_0|)$
- The reduction runs in time $q^r \cdot \text{poly}(|\Gamma_0|)$.

イロト (四) (三) (三) (二) (つ)

MinLabel [CCKLMNT'17]

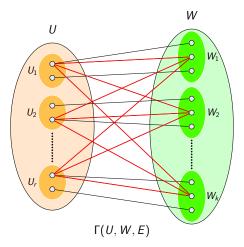


Each W_i is a Right Super Node Each U_i is a Left Super Node

$$S \subseteq W$$
 is a labeling of W if $orall i \in [k], |S \cap W_i| = 1$

 $S \text{ covers } U_i \text{ if } \\ \exists u \in U_i, \ \forall v \in S, (u, v) \in E \end{cases}$

MinLabel [CCKLMNT'17]



Each W_i is a Right Super Node Each U_i is a Left Super Node

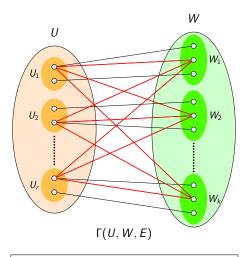
$$S \subseteq W$$
 is a labeling of W if $\forall i \in [k], |S \cap W_i| = 1$

 $S \text{ covers } U_i \text{ if } \\ \exists u \in U_i, \ \forall v \in S, (u, v) \in E \end{cases}$

 $\mathsf{MinLabel}(\Gamma) = \mathsf{smallest} \ X \subseteq W:$ $\forall i \in [r], \exists \mathsf{labeling} \ S \subseteq X,$ $S \ \mathsf{covers} \ U_i$

4 E b

MinLabel [CCKLMNT'17]



Determine if MinLabel(Γ) = k or MinLabel(Γ) $\geq s \cdot k$ Each W_i is a Right Super Node Each U_i is a Left Super Node

$$S \subseteq W$$
 is a labeling of W if
 $\forall i \in [k], |S \cap W_i| = 1$

 $S \text{ covers } U_i \text{ if } \\ \exists u \in U_i, \ \forall v \in S, (u, v) \in E \end{cases}$

 $\mathsf{MinLabel}(\Gamma) = \mathsf{smallest} \ X \subseteq W:$ $\forall i \in [r], \exists \mathsf{labeling} \ S \subseteq X,$ $S \ \mathsf{covers} \ U_i$

∃ ► < ∃ ►</p>

Given a MaxCover instance
$$\Gamma = \left(U = \bigcup_{j=1}^{r} U_j, W = \bigcup_{j=1}^{k} W_i, E \right)$$
,

Э

590

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Given a MaxCover instance
$$\Gamma = \left(U = \bigcup_{j=1}^{r} U_j, W = \bigcup_{j=1}^{k} W_i, E \right),$$

• Completeness: If $MaxCover(\Gamma) = 1$, then $MinLabel(\Gamma) = k$

3

ヘロト 人間 ト 人団 ト 人団 ト

Given a MaxCover instance
$$\Gamma = \left(U = \bigcup_{j=1}^{r} U_j, W = \bigcup_{j=1}^{k} W_i, E \right),$$

- Completeness: If $MaxCover(\Gamma) = 1$, then $MinLabel(\Gamma) = k$
- Soundness: If MaxCover(Γ) $\leq \varepsilon$, then MinLabel(Γ) $\geq (1/\varepsilon)^{1/k} \cdot k$

イロト 不得 トイラト イラト 二日

Given a MaxCover instance
$$\Gamma = \left(U = \bigcup_{j=1}^{r} U_j, W = \bigcup_{j=1}^{k} W_i, E \right)$$
,

- Completeness: If $MaxCover(\Gamma) = 1$, then $MinLabel(\Gamma) = k$
- Soundness: If $MaxCover(\Gamma) \leq \varepsilon$, then $MinLabel(\Gamma) \geq (1/\varepsilon)^{1/k} \cdot k$

Completeness is obvious.

イロト 不得下 イヨト イヨト 二日

Given a MaxCover instance
$$\Gamma = \left(U = \bigcup_{j=1}^{r} U_j, W = \bigcup_{j=1}^{k} W_i, E \right)$$
,

- Completeness: If $MaxCover(\Gamma) = 1$, then $MinLabel(\Gamma) = k$
- Soundness: If $MaxCover(\Gamma) \leq \varepsilon$, then $MinLabel(\Gamma) \geq (1/\varepsilon)^{1/k} \cdot k$

Completeness is obvious. In Soundness case, if $X \subseteq W$ is a MinLabel solution

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Given a MaxCover instance
$$\Gamma = \left(U = \bigcup_{j=1}^{r} U_j, W = \bigcup_{j=1}^{k} W_i, E \right)$$
,

- Completeness: If $MaxCover(\Gamma) = 1$, then $MinLabel(\Gamma) = k$
- Soundness: If $MaxCover(\Gamma) \leq \varepsilon$, then $MinLabel(\Gamma) \geq (1/\varepsilon)^{1/k} \cdot k$

Completeness is obvious. In Soundness case, if $X \subseteq W$ is a MinLabel solution henevery labeling $S \subseteq X$ covers at most ε fraction of the left supernodes.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Given a MaxCover instance
$$\Gamma = \left(U = \bigcup_{j=1}^{r} U_j, W = \bigcup_{j=1}^{k} W_i, E \right)$$
,

- Completeness: If $MaxCover(\Gamma) = 1$, then $MinLabel(\Gamma) = k$
- Soundness: If $MaxCover(\Gamma) \leq \varepsilon$, then $MinLabel(\Gamma) \geq (1/\varepsilon)^{1/k} \cdot k$

Completeness is obvious. In Soundness case, if $X \subseteq W$ is a MinLabel solution henevery labeling $S \subseteq X$ covers at most ε fraction of the left supernodes. There are at most $\binom{|X|/k}{k}$ distinct labeling of W in X.

イロト 不得下 イヨト イヨト 二日

Given a MaxCover instance
$$\Gamma = \left(U = \bigcup_{j=1}^{r} U_j, W = \bigcup_{j=1}^{k} W_i, E \right)$$
,

- Completeness: If $MaxCover(\Gamma) = 1$, then $MinLabel(\Gamma) = k$
- Soundness: If $MaxCover(\Gamma) \leq \varepsilon$, then $MinLabel(\Gamma) \geq (1/\varepsilon)^{1/k} \cdot k$

Completeness is obvious. In Soundness case, if $X \subseteq W$ is a MinLabel solution henevery labeling $S \subseteq X$ covers at most ε fraction of the left supernodes. There are at most $\binom{|X|/k}{k}$ distinct labeling of W in X.

$$\binom{|X|/k}{k} \cdot \varepsilon \geq 1$$

イロト 不得下 イヨト イヨト 二日

Inapproximability of MinLabel [K-LivniNavon'21]

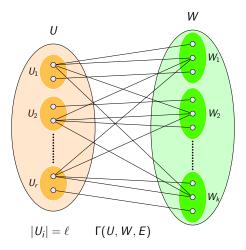
There is a FPT reduction from MaxCover instance
$$\Gamma_0 = \left(U_0 = \bigcup_{j=1}^r U_j^0, W = \bigcup_{j=1}^k W_i, E_0\right)$$
 with projection property to a MinLabel instance $\Gamma = \left(U = \bigcup_{j=1}^{2^{O(q)}} U_j, W = \bigcup_{j=1}^k W_i, E\right)$ such that
• If MaxCover(Γ_0) = 1 then MinLabel(Γ) = k
• If MaxCover(Γ_0) < 1 then MinLabel(Γ) ≥ $\frac{q}{r}$

• $|\Gamma| = \tilde{O}(q^r \cdot |W| \cdot \log |U_0|)$

• The reduction runs in time $q^r \cdot \text{poly}(|\Gamma_0|)$.

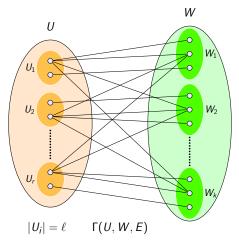
< □ > < □ > < □ > < □ >

DQC



E

590



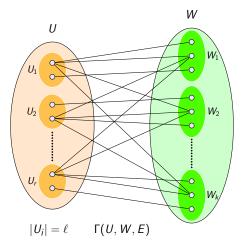
$$\mathcal{U} = \{(i, f) \mid i \in [r], f : [\ell] \to [k]\}$$
$$\forall w \in W_j, S_w \in S$$

Karthik C. S. (NYU)

December 28, 2020 11 / 30

E

590



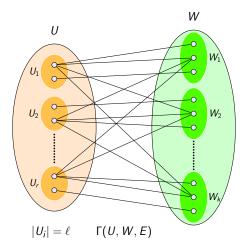
$$\mathcal{U} = \{(i, f) \mid i \in [r], f : [\ell] \to [k]\}$$
$$\forall w \in W_j, S_w \in S$$

$$(i, f) \in S_w \Leftrightarrow \exists u \in U_i$$

 $(u, w) \in E \text{ and } f(u) = j$

E

590



$$\mathcal{U} = \{(i, f) \mid i \in [r], f : [\ell] \to [k]\}$$

$$\forall w \in W_j, S_w \in \mathcal{S}$$

$$(i, f) \in S_w \Leftrightarrow \exists u \in U_i$$

$$(u, w) \in E \text{ and } f(u) = j$$

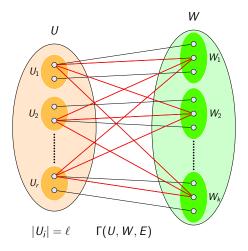
$$|\mathcal{S}| = |W|, |\mathcal{U}| = r \cdot k^{\ell}$$

Karthik C. S. (NYU)

December 28, 2020 11 / 30

E

590



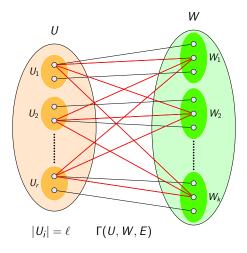
$$\mathcal{U} = \{(i, f) \mid i \in [r], f : [\ell] \rightarrow [k]\}$$

 $\forall w \in W_j, S_w \in \mathcal{S}$
 $(i, f) \in S_w \Leftrightarrow \exists u \in U_i$
 $(u, w) \in E \text{ and } f(u) = j$
 $|\mathcal{S}| = |W|, |\mathcal{U}| = r \cdot k^{\ell}$

 (w_1,\ldots,w_k) is labeling that covers every $U_i \Rightarrow$ (S_{W_1},\ldots,S_{W_k}) covers \mathcal{U}

DQC

3



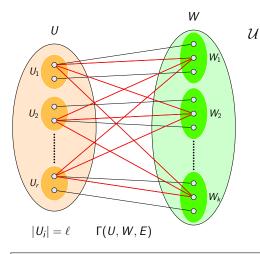
$$\mathcal{U} = \{(i, f) \mid i \in [r], f : [\ell] \rightarrow [k]\}$$

 $\forall w \in W_j, S_w \in S$
 $(i, f) \in S_w \Leftrightarrow \exists u \in U_i$
 $(u, w) \in E \text{ and } f(u) = j$
 $|\mathcal{S}| = |W|, |\mathcal{U}| = r \cdot k^\ell$

 (w_1, \ldots, w_k) is labeling that covers every $U_i \Rightarrow$ $(S_{w_1}, \ldots, S_{w_k})$ covers \mathcal{U}

 $\forall (i, f) \in \mathcal{U}, \exists u \in U_i, (u, w_j) \in E(\forall j \in [k])$

- ∢ f⊐ ▶



Determine if SetCover $(\mathcal{U}, \mathcal{S}) = k$ or SetCover $(\mathcal{U}, \mathcal{S}) \ge s \cdot k$ is hard!

$$= \{(i, f) \mid i \in [r], f : [\ell] \rightarrow [k]\}$$
$$\forall w \in W_j, S_w \in S$$
$$(i, f) \in S_w \Leftrightarrow \exists u \in U_i$$
$$(u, w) \in E \text{ and } f(u) = j$$
$$|S| = |W|, |\mathcal{U}| = r \cdot k^{\ell}$$

 (w_1, \ldots, w_k) is labeling that covers every $U_i \Rightarrow$ $(S_{w_1}, \ldots, S_{w_k})$ covers \mathcal{U}

 $\forall (i, f) \in \mathcal{U}, \exists u \in U_i, (u, w_j) \in E(\forall j \in [k])$

< □ > < @ >

December 28, 2020 11 / 30

MinLabel to Set Cover: Soundness Analysis

•
$$\mathcal{U} = \{(i, f) \mid i \in [r], f : [\ell] \rightarrow [k]\}$$

•
$$(i, f) \in S_w \Leftrightarrow \exists u \in U_i : (u, w) \in E \text{ and } f(u) = j$$

996

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

•
$$\mathcal{U} = \{(i, f) \mid i \in [r], f : [\ell] \rightarrow [k]\}$$

•
$$(i, f) \in S_w \Leftrightarrow \exists u \in U_i : (u, w) \in E \text{ and } f(u) = j$$

• Suppose X is a set cover of size sk - 1

3

•
$$\mathcal{U} = \{(i, f) \mid i \in [r], f : [\ell] \rightarrow [k]\}$$

•
$$(i, f) \in S_w \Leftrightarrow \exists u \in U_i : (u, w) \in E \text{ and } f(u) = j$$

- Suppose X is a set cover of size sk 1
- $\exists U_i$ not covered by any labeling in X

Image: Image:

3

590

•
$$\mathcal{U} = \{(i, f) \mid i \in [r], f : [\ell] \rightarrow [k]\}$$

- $(i, f) \in S_w \Leftrightarrow \exists u \in U_i : (u, w) \in E \text{ and } f(u) = j$
- Suppose X is a set cover of size sk 1
- $\exists U_i$ not covered by any labeling in X
- For every $u \in U_i$ there is some $j \in [k]$ such that $W_j \cap X \cap N(u)$ is empty

•
$$\mathcal{U} = \{(i, f) \mid i \in [r], f : [\ell] \rightarrow [k]\}$$

- $(i, f) \in S_w \Leftrightarrow \exists u \in U_i : (u, w) \in E \text{ and } f(u) = j$
- Suppose X is a set cover of size sk 1
- $\exists U_i$ not covered by any labeling in X
- For every $u \in U_i$ there is some $j \in [k]$ such that $W_j \cap X \cap N(u)$ is empty
- Construct f using above u

•
$$\mathcal{U} = \{(i, f) \mid i \in [r], f : [\ell] \rightarrow [k]\}$$

- $(i, f) \in S_w \Leftrightarrow \exists u \in U_i : (u, w) \in E \text{ and } f(u) = j$
- Suppose X is a set cover of size sk 1
- $\exists U_i$ not covered by any labeling in X
- For every $u \in U_i$ there is some $j \in [k]$ such that $W_j \cap X \cap N(u)$ is empty
- Construct f using above u
- (i, f) is not covered by X

Inapproximability of Set Cover [K-LivniNavon'21]

There is a FPT reduction from k-clique instance G([n], E) to a Set Cover instance (\mathcal{U}, S) such that

- If G has a k-clique then $\binom{k}{2}$ sets in S cover U
- If G has no k-clique then $(\log n)^{1/k}$ sets in S are needed to cover U
- $|\mathcal{U}|, |\mathcal{S}| \leq n$
- The reduction runs in time $2^{\text{poly}(k)} \cdot \text{poly}(n)$.

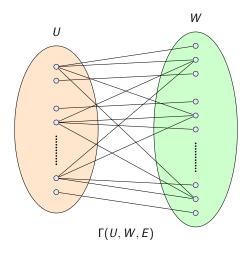
Part 2 Hardness of Biclique

Karthik C. S. (NYU)

Parameterized Inapproximability

December 28, 2020 14 / 30

One-Sided Biclique: Recap



Find k vertices in Wwith most common neighbors

< □ > < 同 >

590

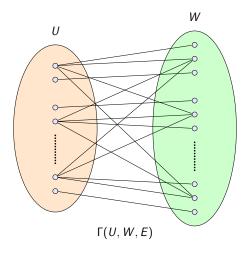
Inapproximability of One-Sided Biclique (Lin'18)

There is a FPT reduction from k-Clique instance $G([n], E_0)$ to a One-Sided Biclique instance $\Gamma = (U, W, E)$ such that

- If G has a k-clique then there are ^k₂ vertices in W which have n^{1/k} common neighbors in U
- If G has no k-clique then for every ^k₂ vertices in W they have at most (k + 1)! common neighbors in U
- $|\Gamma| = n^3$
- The reduction runs in time poly(*n*)

イロト イポト イヨト イヨト 二日

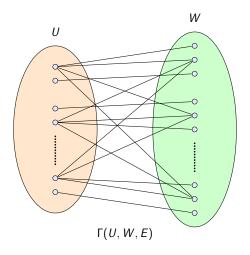
Biclique: Definition



590

イロト イロト イヨト イヨト 二日

Biclique: Definition



Find k vertices in Wwith k common neighbors in U

Э

DQC

Hardness of Biclique (Lin'18)

There is a FPT reduction from k-Clique instance $G([n], E_0)$ to a Biclique instance $\Gamma = (U, W, E)$ such that

- If G has a k-clique then there are (k + 1)! + 1 vertices in W which have (k + 1)! + 1 common neighbors in U
- If G has no k-clique then for every (k + 1)! + 1 vertices in W they have at most (k + 1)! common neighbors in U
- $|\Gamma| = n^3$
- The reduction runs in time poly(n)

Part 3

Gap-ETH Hardness of Approximation of Clique

Karthik C. S. (NYU)

Parameterized Inapproximability

December 28, 2020 19 / 30

Gap-ETH

$\exists \varepsilon, \delta > 0$, no algorithm can solve (1 vs. $1 - \delta$)-Gap 3-SAT on *n* variables in $2^{\varepsilon n}$ time.

Karthik C. S. (NYU)

Parameterized Inapproximability

December 28, 2020 20 / 30

Inapproximability of Clique [Chalermsook et al. '17]

Assuming Gap-ETH, there is no FPT algorithm that can distinguish between the following two cases

Completeness: G has a k-clique

Soundness: G has no $(\log k)$ -clique

Image: Image:

Hardness of Approximating Clique: Proof

Given φ on *n* variables and *cn* clauses,

996

イロト 不得下 イヨト イヨト 二日

Given φ on *n* variables and *cn* clauses, for every $i \in [k]$, construct C_i by picking $Dn/\log k$ clauses randomly.

イロト イポト イヨト イヨト 二日

Given φ on *n* variables and *cn* clauses, for every $i \in [k]$, construct C_i by picking $Dn/\log k$ clauses randomly. We will construct a graph *G* on independent disjoint sets V_1, \ldots, V_k .

イロト イポト イヨト イヨト 二日

Given φ on *n* variables and *cn* clauses, for every $i \in [k]$, construct C_i by picking $Dn/\log k$ clauses randomly. We will construct a graph *G* on independent disjoint sets V_1, \ldots, V_k . Each V_i contains a vertex for every satisfying partial assignment to clauses in C_i .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ - つく()

Completeness: If σ is a satisfying assignment to φ then we pick in V_i the restriction of σ to variables appearing in C_i .

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

Completeness: If σ is a satisfying assignment to φ then we pick in V_i the restriction of σ to variables appearing in C_i .

Soundness: Any collection $C_{i_1}, \ldots, C_{i_{\log k}}$ contains $(1 - \delta/2)$ fraction of clauses of φ .

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

Completeness: If σ is a satisfying assignment to φ then we pick in V_i the restriction of σ to variables appearing in C_i .

Soundness: Any collection $C_{i_1}, \ldots, C_{i_{\log k}}$ contains $(1 - \delta/2)$ fraction of clauses of φ . If $(v_{i_1}, \ldots, v_{i_{\log k}}) \in V_{i_1} \times \cdots \times V_{i_{\log k}}$ is a clique then we can find an assignment that satisfies $(1 - \delta/2)$ fraction of clauses.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Completeness: If σ is a satisfying assignment to φ then we pick in V_i the restriction of σ to variables appearing in C_i .

Soundness: Any collection $C_{i_1}, \ldots, C_{i_{\log k}}$ contains $(1 - \delta/2)$ fraction of clauses of φ . If $(v_{i_1}, \ldots, v_{i_{\log k}}) \in V_{i_1} \times \cdots \times V_{i_{\log k}}$ is a clique then we can find an assignment that satisfies $(1 - \delta/2)$ fraction of clauses.

Any $T(k) \cdot \text{poly}(|V|)$ algorithm for gap k-clique yields a $T(k) \cdot 2^{O(Dn/\log k)}$ algorithm for (1 vs. $1 - \delta$)-Gap 3-SAT.

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

Part 4

Open Problems from these Lectures

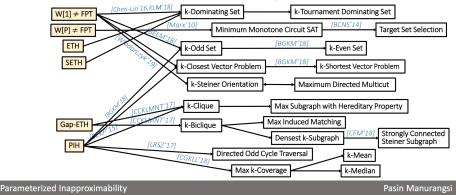
Karthik C. S. (NYU)

Parameterized Inapproximability

December 28, 2020 23 / 30

Parameterized Inapproximability: Partial Summary

Parameterized Inapproximability: Recent Developments



Karthik C. S. (NYU)

December 28, 2020 24 / 30

イロト イヨト イヨト

Is it W[1]-Hard to approximate k-Clique to 1.01 factor?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

ETH

 $\exists \varepsilon > 0$, no algorithm can solve 3-SAT on *n* variables in $2^{\varepsilon n}$ time.

990

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ETH

 $\exists \varepsilon > 0$, no algorithm can solve 3-SAT on *n* variables in $2^{\varepsilon n}$ time.

Gap-ETH

 $\exists \varepsilon, \delta > 0$, no algorithm can solve (1 vs. $1 - \delta$)-Gap 3-SAT on *n* variables in $2^{\varepsilon n}$ time.

ETH

 $\exists \varepsilon > 0$, no algorithm can solve 3-SAT on *n* variables in $2^{\varepsilon n}$ time.

Gap-ETH

 $\exists \varepsilon, \delta > 0$, no algorithm can solve (1 vs. $1 - \delta$)-Gap 3-SAT on *n* variables in $2^{\varepsilon n}$ time.

Does Gap-ETH follow from ETH?

PIH [Lokshtanov-Ramanujan-Saurabh-Zehavi'17]

Is it W[1]-Hard to approximate 2-CSP on k variables and n alphabet?

Is it W[2]-Hard to approximate k-Set Cover to 1.01 factor?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Is it W[2]-Hard to approximate k-Set Cover to 1.01 factor?

Is it W[1]-Hard to approximate k-Set Cover to $o(\log n)$ factor?

Karthik C. S. (NYU)

Parameterized Inapproximability

December 28, 2020 28 / 30

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Is it W[2]-Hard to approximate k-Set Cover to 1.01 factor?

Is it W[1]-Hard to approximate k-Set Cover to $o(\log n)$ factor?

Is it W[1]-Hard to approximate k-MaxCoverage beyond 1 - 1/e factor?

Karthi	k C.	S. (NYU)

Is it W[1]-Hard to approximate k-Biclique to 1.01 factor?

200

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Is MaxCover equivalent to One-Sided Biclique?

Karthik C. S. (NYU)

Parameterized Inapproximability

December 28, 2020 30 / 30

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <