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Part 1
Hardness of Approximating Set Cover
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MaxCover: Recap

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U ,W ,E )

Determine if MaxCover(Γ) = 1

or MaxCover(Γ) ≤ s

Each Wi is a Right Super Node
Each Ui is a Left Super Node

S ⊆W is a labeling of W if
∀i ∈ [k], |S ∩Wi | = 1

S covers Ui if

∃u ∈ Ui , ∀v ∈ S , (u, v) ∈ E

MaxCover(Γ,S) = Fraction of
Ui ’s covered by S

MaxCover(Γ) = max
S

MaxCover(Γ, S)
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MaxCover: Projection Property

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U ,W ,E )

MaxCover with projection property
is W[1]-Hard

Γ has projection property:

For every Ui and Wj ,

Induced subgraph of (Ui ,Wj) is:

• complete bipartite graph

(i.e., irrelevant), or,

• ∀w ∈Wj , deg(w)=1

(i.e., projection)
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MaxCover: Gap Creation

Inapproximability of MaxCover using Reed Solomon Codes

There is a FPT reduction from MaxCover instance Γ0 =(
U0 =

r⋃
j=1

U0
j ,W =

k⋃
j=1

Wi ,E0

)
with projection property to a MaxCover in-

stance Γ =

(
U =

q⋃
j=1

Uj ,W =
k⋃

j=1

Wi ,E

)
such that

If MaxCover(Γ0) = 1 then MaxCover(Γ) = 1

If MaxCover(Γ0) < 1 then MaxCover(Γ) ≤ logq |U0|
q

|Γ| = Õ(qr · |W | · log |U0|)

The reduction runs in time qr · poly(|Γ0|).
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MinLabel [CCKLMNT’17]

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U ,W ,E )

Determine if MinLabel(Γ) = k

or MinLabel(Γ) ≥ s · k

Each Wi is a Right Super Node
Each Ui is a Left Super Node

S ⊆W is a labeling of W if
∀i ∈ [k], |S ∩Wi | = 1

S covers Ui if

∃u ∈ Ui , ∀v ∈ S , (u, v) ∈ E

MinLabel(Γ) = smallest X ⊆W :

∀i ∈ [r ],∃labeling S ⊆ X ,
S covers Ui
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Maxcover to MinLabel

Reduction from MaxCover to MinLabel [CCKLMNT17]

Given a MaxCover instance Γ =

(
U =

r⋃
j=1

Uj ,W =
k⋃

j=1

Wi ,E

)
,

Completeness: If MaxCover(Γ) = 1, then MinLabel(Γ) = k

Soundness: If MaxCover(Γ) ≤ ε, then MinLabel(Γ) ≥ (1/ε)1/k · k

Completeness is obvious. In Soundness case, if X ⊆ W is a MinLabel
solutionthen every labeling S ⊆ X covers at most ε fraction of the left
supernodes. There are at most

(|X |/k
k

)
distinct labeling of W in X .(

|X |/k
k

)
· ε ≥ 1
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Improved Inapproximability of MinLabel

Inapproximability of MinLabel [K-LivniNavon’21]

There is a FPT reduction from MaxCover instance Γ0 =(
U0 =

r⋃
j=1

U0
j ,W =

k⋃
j=1

Wi ,E0

)
with projection property to a MinLabel in-

stance Γ =

(
U =

2O(q)⋃
j=1

Uj ,W =
k⋃

j=1

Wi ,E

)
such that

If MaxCover(Γ0) = 1 then MinLabel(Γ) = k

If MaxCover(Γ0) < 1 then MinLabel(Γ) ≥ q
r

|Γ| = Õ(qr · |W | · log |U0|)

The reduction runs in time qr · poly(|Γ0|).
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MinLabel to Set Cover [Feige’98]

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U ,W ,E )|Ui | = `

Determine if SetCover(U ,S) = k

or SetCover(U ,S) ≥ s · k is hard!

U = {(i , f ) | i ∈ [r ], f : [`]→ [k]}
∀w ∈Wj ,Sw ∈ S

(i , f ) ∈ Sw ⇔ ∃u ∈ Ui

(u,w) ∈ E and f (u) = j

|S| = |W |, |U| = r · k`

(w1, . . . ,wk) is labeling
that covers every Ui ⇒
(Sw1 , . . . ,Swk

) covers U

∀(i , f ) ∈ U , ∃u ∈ Ui ,

(u,wj) ∈ E (∀j ∈ [k])
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MinLabel to Set Cover: Soundness Analysis

U = {(i , f ) | i ∈ [r ], f : [`]→ [k]}

(i , f ) ∈ Sw ⇔ ∃u ∈ Ui : (u,w) ∈ E and f (u) = j

Suppose X is a set cover of size sk − 1

∃Ui not covered by any labeling in X

For every u ∈ Ui there is some j ∈ [k] such that Wj ∩ X ∩ N(u) is
empty

Construct f using above u

(i , f ) is not covered by X
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Parameterized Inapproximability of Set Cover

Inapproximability of Set Cover [K-LivniNavon’21]

There is a FPT reduction from k-clique instance G ([n],E ) to a Set Cover instance
(U ,S) such that

If G has a k-clique then
(
k
2

)
sets in S cover U

If G has no k-clique then (log n)1/k sets in S are needed to cover U

|U|, |S| ≤ n

The reduction runs in time 2poly(k) · poly(n).
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Part 2
Hardness of Biclique
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One-Sided Biclique: Recap

W
U

Γ(U ,W ,E )

Find k vertices in W
with most common neighbors
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One-Sided Biclique: Gap Creation

Inapproximability of One-Sided Biclique (Lin’18)

There is a FPT reduction from k-Clique instance G ([n],E0) to a One-Sided Biclique
instance Γ = (U,W ,E ) such that

If G has a k-clique then there are
(
k
2

)
vertices in W which have n1/k

common neighbors in U

If G has no k-clique then for every
(
k
2

)
vertices in W they have at most

(k + 1)! common neighbors in U

|Γ| = n3

The reduction runs in time poly(n)
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Biclique: Definition

W
U

Γ(U ,W ,E )

Find k vertices in W
with k common neighbors in U
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Biclique: Hardness

Hardness of Biclique (Lin’18)

There is a FPT reduction from k-Clique instance G ([n],E0) to a Biclique instance
Γ = (U,W ,E ) such that

If G has a k-clique then there are (k + 1)! + 1 vertices in W which have
(k + 1)! + 1 common neighbors in U

If G has no k-clique then for every (k + 1)! + 1 vertices in W they have at
most (k + 1)! common neighbors in U

|Γ| = n3

The reduction runs in time poly(n)
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Part 3
Gap-ETH Hardness of Approximation of Clique

Karthik C. S. (NYU) Parameterized Inapproximability December 28, 2020 19 / 30



Gap-ETH

Gap-ETH

∃ε, δ > 0, no algorithm can solve (1 vs. 1− δ)-Gap 3-SAT on n variables
in 2εn time.
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Hardness of Approximating Clique

Inapproximability of Clique [Chalermsook et al. ’17]

Assuming Gap-ETH, there is no FPT algorithm that can distinguish between the
following two cases

Completeness: G has a k-clique

Soundness: G has no (log k)-clique
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Hardness of Approximating Clique: Proof

Given ϕ on n variables and cn clauses,

for every i ∈ [k], construct Ci by
picking Dn/ log k clauses randomly. We will construct a graph G on inde-
pendent disjoint sets V1, . . . ,Vk .Each Vi contains a vertex for every satis-
fying partial assignment to clauses in Ci . Insert an edge (vi , vj) ∈ Vi × Vj

iff the partial assignments are consistent. Note |Vi | ≤ 2O(Dn/logk).

Completeness: If σ is a satisfying assignment to ϕ then we pick in Vi the
restriction of σ to variables appearing in Ci .

Soundness: Any collection Ci1 , . . . ,Cilog k
contains (1 − δ/2) fraction of

clauses of ϕ. If (vi1 , . . . , vilog k
) ∈ Vi1 × · · · × Vilog k

is a clique then we can
find an assignment that satisfies (1− δ/2) fraction of clauses.

Any T (k) · poly(|V |) algorithm for gap k-clique yields a T (k) · 2O(Dn/ log k)

algorithm for (1 vs. 1− δ)-Gap 3-SAT.
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Part 4
Open Problems from these Lectures
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Parameterized Inapproximability: Partial Summary
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Clique

Is it W[1]-Hard to approximate k-Clique to 1.01 factor?
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Gap-ETH

ETH

∃ε > 0, no algorithm can solve 3-SAT on n variables in 2εn time.

Gap-ETH

∃ε, δ > 0, no algorithm can solve (1 vs. 1− δ)-Gap 3-SAT on n variables in 2εn

time.

Does Gap-ETH follow from ETH?
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PIH/Label Cover

PIH [Lokshtanov-Ramanujan-Saurabh-Zehavi’17]

Is it W[1]-Hard to approximate 2-CSP on k variables and n alphabet?
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Set Cover

Is it W[2]-Hard to approximate k-Set Cover to 1.01 factor?

Is it W[1]-Hard to approximate k-Set Cover to o(log n) factor?

Is it W[1]-Hard to approximate k-MaxCoverage beyond 1− 1/e factor?
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Biclique

Is it W[1]-Hard to approximate k-Biclique to 1.01 factor?
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MaxCover vs One-Sided Biclique

Is MaxCover equivalent to One-Sided Biclique?
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