Hardness of Approximation meets Parameterized Complexity

Karthik C. S.

New York University

December 27, 2020

Karthik C. S. (NYU)

Parameterized Inapproximability

< ∃ > December 27, 2020 1/31

Image: A match a ma

Э

DQC

- Day 1: The Setting
- Day 2: Gap Creation
- Day 3: Applications

- 2

999

イロト イボト イヨト イヨト

Part 1: Hardness of Approximating MaxCover

- Recap
- MaxCover with Projection Property
- Gap Creation

イロト イボト イヨト イヨト

э

Part 1: Hardness of Approximating MaxCover

- Recap
- MaxCover with Projection Property
- Gap Creation

Part 2: Hardness of Approximating One-Sided Biclique

- Recap
- Gap Creation

3

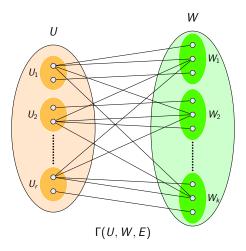
イロト イボト イヨト イヨト

990

Part 1 Gap Creation in MaxCover

Karthik C. S. (NYU)

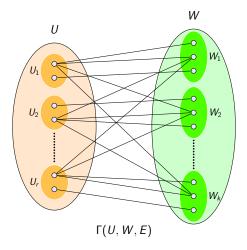
Parameterized Inapproximability



- 2

900

<ロト <回ト < 回ト < 回ト



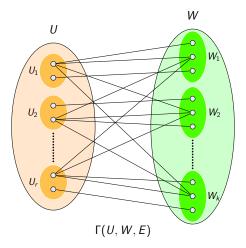
Each W_i is a Right Super Node Each U_i is a Left Super Node

< 47 ▶

Karthik C. S. (NYU)

э

DQC



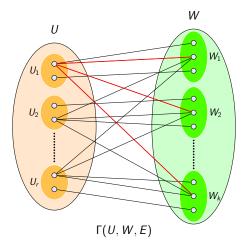
Each W_i is a Right Super Node Each U_i is a Left Super Node

$$S \subseteq W$$
 is a labeling of W if $\forall i \in [k], |S \cap W_i| = 1$

< 47 ▶

э

DQC

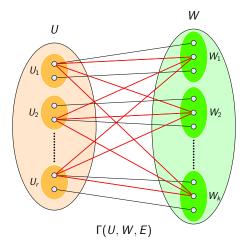


Each W_i is a Right Super Node Each U_i is a Left Super Node

 $S \subseteq W$ is a labeling of W if $\forall i \in [k], |S \cap W_i| = 1$

S covers U_i if $\exists u \in U_i, \forall v \in S, (u, v) \in E$

э



Each W_i is a Right Super Node Each U_i is a Left Super Node

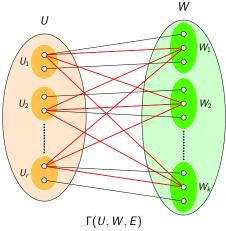
 $S \subseteq W$ is a labeling of W if $\forall i \in [k], |S \cap W_i| = 1$

S covers U_i if $\exists u \in U_i, \forall v \in S, (u, v) \in E$

 $MaxCover(\Gamma, S) = Fraction of$ U_i 's covered by S

Image: Image:

3



Each W_i is a Right Super Node Each U_i is a Left Super Node

 $S \subseteq W$ is a labeling of W if $\forall i \in [k], |S \cap W_i| = 1$

 $S \text{ covers } U_i \text{ if } \\ \exists u \in U_i, \ \forall v \in S, (u, v) \in E \end{cases}$

 $MaxCover(\Gamma, S) = Fraction of$ $U_i's covered by S$

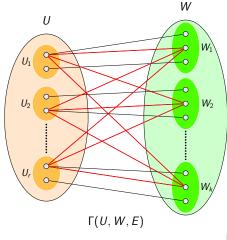
 $\mathsf{MaxCover}(\Gamma) = \max_{S} \mathsf{MaxCover}(\Gamma, S)$

Image: A math a math

3

- 4 ⊒ →

Sac



Determine if $MaxCover(\Gamma) = 1$ or $MaxCover(\Gamma) \le s$ Each W_i is a Right Super Node Each U_i is a Left Super Node

 $S \subseteq W$ is a labeling of W if $\forall i \in [k], |S \cap W_i| = 1$

 $S \text{ covers } U_i \text{ if } \\ \exists u \in U_i, \ \forall v \in S, (u, v) \in E \end{cases}$

 $MaxCover(\Gamma, S) = Fraction of$ $U_i's covered by S$

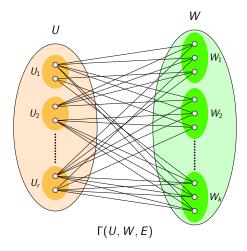
 $MaxCover(\Gamma) = \max_{S} MaxCover(\Gamma, S)$

イロト イボト イヨト イヨト

3

Sac

MaxCover: Projection Property

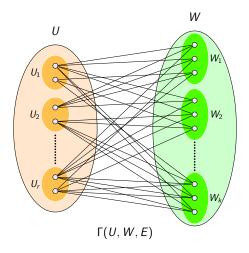


E

DQC

< □ > < □ > < □ > < □ > < □ >

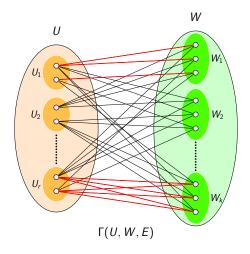
MaxCover: Projection Property



 Γ has projection property: For every U_i and W_j , Induced subgraph of (U_i, W_j) is: • complete bipartite graph

(i.e., irrelevant), or,

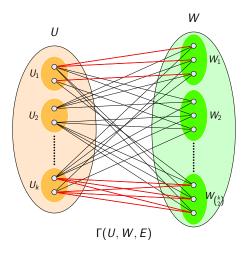
MaxCover: Projection Property



 Γ has projection property: For every U_i and W_j , Induced subgraph of (U_i, W_j) is: • complete bipartite graph

(i.e., irrelevant), or,

MaxCover with Projection Property is W[1]-Hard



Input: $G([n], E_0)$

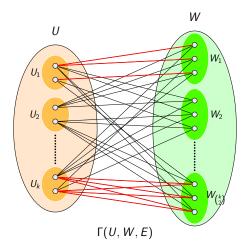
Image: A matrix and a matrix

Karthik C. S. (NYU)

3

DQC

MaxCover with Projection Property is W[1]-Hard



Input: $G([n], E_0)$

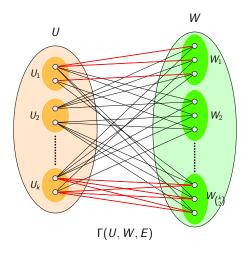
$$U_i = [n]$$
 and $W_{j,j'} = E_0$

Image: A matrix and a matrix

3

DQC

MaxCover with Projection Property is W[1]-Hard



Input: $G([n], E_0)$

$$U_i = [n]$$
 and $W_{j,j'} = E_0$

 $W_{j,j'}$ has projection to U_j and $U_{j'}$

< A > <

3

590

Inapproximability of MaxCover [K-LivniNavon'21]

There is a FPT reduction from MaxCover instance
$$\Gamma_0 = \begin{pmatrix} U_0 = \bigcup_{j=1}^r U_j^0, W = \bigcup_{j=1}^k W_i, E_0 \end{pmatrix}$$
 with projection property to a MaxCover instance $\Gamma = \begin{pmatrix} U = \bigcup_{j=1}^{O(\log |U_0|)} U_j, W = \bigcup_{j=1}^k W_i, E \end{pmatrix}$ such that

E

DQC

◆□▶ ◆□▶ ◆□▶ ◆□▶

Inapproximability of MaxCover [K-LivniNavon'21]

There is a FPT reduction from MaxCover instance $\Gamma_0 = \left(U_0 = \bigcup_{j=1}^r U_j^0, W = \bigcup_{j=1}^k W_i, E_0\right)$ with projection property to a MaxCover instance $\Gamma = \left(U = \bigcup_{j=1}^{O(\log |U_0|)} U_j, W = \bigcup_{j=1}^k W_i, E\right)$ such that • If MaxCover(Γ_0) = 1 then MaxCover(Γ) = 1

• If $MaxCover(\Gamma_0) < 1$ then $MaxCover(\Gamma) \le 0.75$

Inapproximability of MaxCover [K-LivniNavon'21]

There is a FPT reduction from MaxCover instance $\Gamma_0 = \begin{pmatrix} U_0 = \bigcup_{j=1}^r U_j^0, W = \bigcup_{j=1}^k W_i, E_0 \end{pmatrix}$ with projection property to a MaxCover instance $\Gamma = \begin{pmatrix} U = \bigcup_{j=1}^{O(\log |U_0|)} U_j, W = \bigcup_{j=1}^k W_i, E \end{pmatrix}$ such that • If MaxCover(Γ_0) = 1 then MaxCover(Γ) = 1

- If $MaxCover(\Gamma_0) < 1$ then $MaxCover(\Gamma) \le 0.75$
- $|\Gamma| = \tilde{O}(2^r \cdot |W| \cdot \log |U_0|)$
- The reduction runs in time $2^{O(r)} \cdot \text{poly}(|\Gamma_0|)$.

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

Coding Theory: Recap

- $C \subseteq [q]^L$
- Distance of C:

$$\Delta(C) := \min_{x,y\in C} \|x-y\|_0$$

996

イロト イロト イヨト イヨト 二日

Coding Theory: Recap

- $C \subseteq [q]^L$
- Distance of C:

$$\Delta(C) := \min_{x,y\in C} \|x-y\|_0$$

• For some constant $\rho > 0$, collection of $2^{\rho L}$ Random Binary Strings is a code with distance L/4

3

イロト イボト イヨト イヨト

Coding Theory: Recap

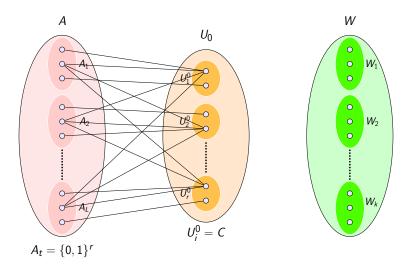
- $C \subseteq [q]^L$
- Distance of C:

$$\Delta(C) := \min_{x,y\in C} \|x-y\|_0$$

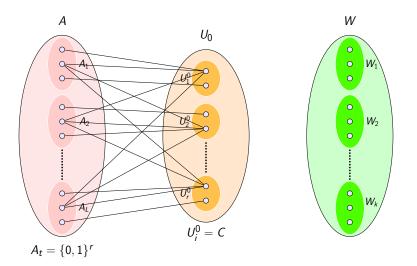
- For some constant $\rho > 0$, collection of $2^{\rho L}$ Random Binary Strings is a code with distance L/4
- Reed Solomon Codes:
 - Evaluations of degree d univariate polynomials over \mathbb{F}_q
 - $|\mathsf{RS}| = q^{d+1}$
 - $\Delta(\mathsf{RS}) = q d$
 - q^{d+1} codewords in $[q]^q$ with distance q d

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Threshold Graph Construction



Threshold Graph Construction



 $(u, (q_1, \ldots, q_r)) \in U_i^0 \times A_t$ is an edge $\Leftrightarrow u_t = q_i$

Completeness

For every $(u^1, \ldots, u^r) \in U_1^0 \times \cdots \times U_r^0$ and every A_t there exists a unique common neighbor of (u^1, \ldots, u^r) in A_t

Karthik C. S. (NYU)

▲ロト ▲周ト ▲ヨト ▲ヨト ニヨー のなべ

Completeness

For every $(u^1, \ldots, u^r) \in U_1^0 \times \cdots \times U_r^0$ and every A_t there exists a unique common neighbor of (u^1, \ldots, u^r) in A_t

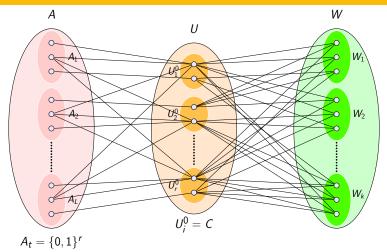
Soundness

For every $u, u' \in U_i^0$, there are at most $L - \Delta(C)$ many supernodes in A which have a common neighbor of u and u'

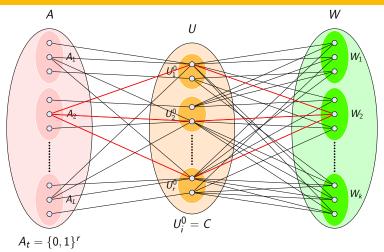
Karthik C. S. (NYU)

Parameterized Inapproximability

Threshold Graph Composition



Threshold Graph Composition



 $(w, (q_1, \ldots, q_r)) \in W_j \times A_t$ is an edge $\Leftrightarrow \exists (u^1, \ldots, u^r) \in U_1^0 \times \cdots \cup U_r^0$ such that $\forall i \in [k], (w, u^i)$ and $(u^i, (q_1, \ldots, q_r))$ are both edges

<□▶ < □▶ < □▶ < □▶ < □▶ = □ - つへぐ

- Let $(w_1, \ldots, w_k) \in W_1 \times \cdots \times W_k$ be optimal labeling of Γ_0
- Let $(u^1, \ldots, u^r) \in U_1^0 \times \cdots \times U_r^0$ be common neighbors of (w_1, \ldots, w_k) in Γ_0

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

- Let $(w_1, \ldots, w_k) \in W_1 \times \cdots \times W_k$ be optimal labeling of Γ_0
- Let $(u^1, \ldots, u^r) \in U_1^0 \times \cdots \times U_r^0$ be common neighbors of (w_1, \ldots, w_k) in Γ_0

Completeness of Threshold Graph

For every $(u^1, \ldots, u^r) \in U_1^0 \times \cdots \times U_r^0$ and every A_t there exists a unique common neighbor of (u^1, \ldots, u^r) in A_t

Karthik C. S. (NYU)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

- Fix $(w_1, \ldots, w_k) \in W_1 \times \cdots \times W_k$
- There exists U_i^0 not covered by (w_1, \ldots, w_k)

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

- Fix $(w_1, \ldots, w_k) \in W_1 \times \cdots \times W_k$
- There exists U_i^0 not covered by (w_1, \ldots, w_k)
- There exists w_j and $w_{j'}$ with neighbors u and u' resp. in U_i^0 ($u \neq u'$)

イロト イポト イヨト イヨト 二日

- Fix $(w_1, \ldots, w_k) \in W_1 \times \cdots \times W_k$
- There exists U_i^0 not covered by (w_1, \ldots, w_k)
- There exists w_j and $w_{j'}$ with neighbors u and u' resp. in U_i^0 ($u \neq u'$)
- If a ∈ A is common neighbor of w_j and w_{j'} in Γ then u and u' are common neighbors of a in Threshold graph

イロト イポト イヨト イヨト 二日

- Fix $(w_1, \ldots, w_k) \in W_1 \times \cdots \times W_k$
- There exists U_i^0 not covered by (w_1, \ldots, w_k)
- There exists w_j and $w_{j'}$ with neighbors u and u' resp. in U_i^0 ($u \neq u'$)
- If a ∈ A is common neighbor of w_j and w_{j'} in Γ then u and u' are common neighbors of a in Threshold graph

Soundness of Threshold Graph

For every $u, u' \in U_i^0$, there are at most $L - \Delta(C)$ many supernodes in A which have a common neighbor of u and u'

Karthik C. S. (NYU)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

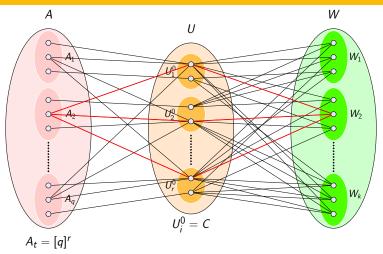
Inapproximability of MaxCover using Random Binary Codes

There is a FPT reduction from MaxCover instance
$$\Gamma_0 = \left(U_0 = \bigcup_{j=1}^r U_j^0, W = \bigcup_{j=1}^k W_i, E_0\right)$$
 with projection property to a MaxCover instance $\Gamma = \left(U = \bigcup_{j=1}^{O(\log |U_0|)} U_j, W = \bigcup_{j=1}^k W_i, E\right)$ such that
• If MaxCover(Γ_0) = 1 then MaxCover(Γ) = 1

- If $\mathsf{MaxCover}(\Gamma_0) < 1$ then $\mathsf{MaxCover}(\Gamma) \leq 0.75$
- $|\Gamma| = \tilde{O}(2^r \cdot |W| \cdot \log |U_0|)$
- The reduction runs in time $2^{O(r)} \cdot \text{poly}(|\Gamma_0|)$.

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

Threshold Graph Composition with Reed Solomon Codes



 $(w, (q_1, \ldots, q_r)) \in W_j \times A_t$ is an edge $\Leftrightarrow \exists (u^1, \ldots, u^r) \in U_1^0 \times \cdots \cup U_r^0$ such that $\forall i \in [k], (w, u^i)$ and $(u^i, (q_1, \ldots, q_r))$ are both edges

Completeness

For every $(u^1, \ldots, u^r) \in U_1^0 \times \cdots \times U_r^0$ and every A_t there exists a unique common neighbor of (u^1, \ldots, u^r) in A_t

Soundness

For every $u, u' \in U_i^0$, there are at most $\log_q |U_0|$ many supernodes in A which have a common neighbor of u and u'

Karthik C. S. (NYU)

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

Inapproximability of MaxCover using Reed Solomon Codes There is a FPT reduction from MaxCover instance $\Gamma_0 = \begin{pmatrix} U_0 = \bigcup_{j=1}^r U_j^0, W = \bigcup_{j=1}^k W_i, E_0 \end{pmatrix}$ with projection property to a MaxCover instance $\Gamma = \begin{pmatrix} U = \bigcup_{j=1}^q U_j, W = \bigcup_{j=1}^k W_i, E \end{pmatrix}$ such that • If MaxCover(Γ_0) = 1 then MaxCover(Γ) = 1

- If $MaxCover(\Gamma_0) < 1$ then $MaxCover(\Gamma) \leq \frac{\log_q |U_0|}{q}$
- $|\Gamma| = \tilde{O}(q^r \cdot |W| \cdot \log |U_0|)$
- The reduction runs in time $q^r \cdot \text{poly}(|\Gamma_0|)$.

イロト (四) (三) (三) (二) (つ)

Part 2

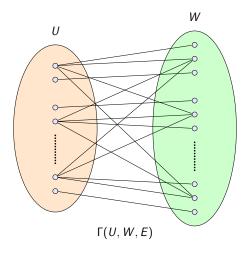
Gap Creation in One-Sided Biclique

Karthik C. S. (NYU)

Parameterized Inapproximability

December 27, 2020 19 / 31

One-Sided Biclique: Recap

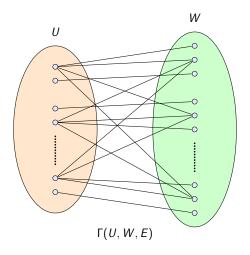


E

590

◆□▶ ◆□▶ ◆□▶ ◆□▶

One-Sided Biclique: Recap



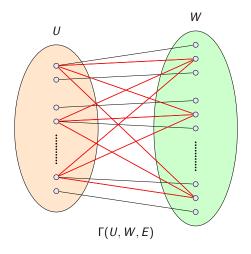
Find k vertices in Wwith most common neighbors

< □ > < 同 >

Э

590

One-Sided Biclique: Recap



Find k vertices in Wwith most common neighbors

Image: A matrix and a matrix

Э

590

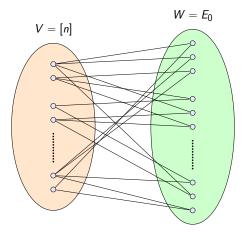
Inapproximability of One-Sided Biclique (Lin'18)

There is a FPT reduction from k-Clique instance $G([n], E_0)$ to a One-Sided Biclique instance $\Gamma = (U, W, E)$ such that

- If G has a k-clique then there are ^k₂ vertices in W which have n^{1/k} common neighbors in U
- If G has no k-clique then for every ^k₂ vertices in W they have at most (k + 1)! common neighbors in U
- $|\Gamma| = n^3$
- The reduction runs in time poly(*n*)

イロト (四) (三) (三) (二) (つ)

Starting from k-Clique



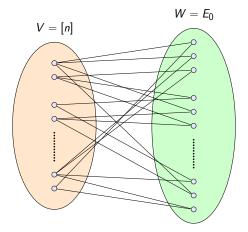
Input: $G([n], E_0)$

Karthik C. S. (NYU)

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Starting from *k*-Clique



Input: $G([n], E_0)$

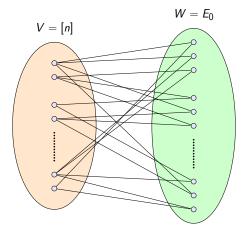
If G has a k-clique then there are $\binom{k}{2}$ vertices in W which in total have k neighbors

Image: Image:

nac

3

Starting from k-Clique



Input: $G([n], E_0)$

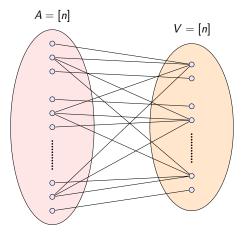
If G has a k-clique then there are $\binom{k}{2}$ vertices in W which in total have k neighbors

If G has no k-clique then any $\binom{k}{2}$ vertices in W has totally at least k+1 neighbors

December 27, 2020

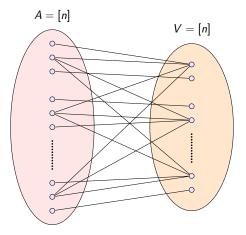
DQC

22 / 31



900

(日)

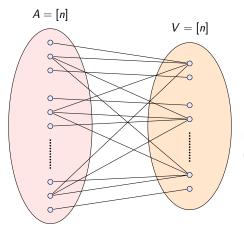


Every k vertices in V has at least $n^{1/k}$ common neighbors in A

• • • • • • • • •

E

DQC



Every k vertices in V has at least $n^{1/k}$ common neighbors in A

Every k+1 vertices in V has at most (k+1)! common neighbors in A

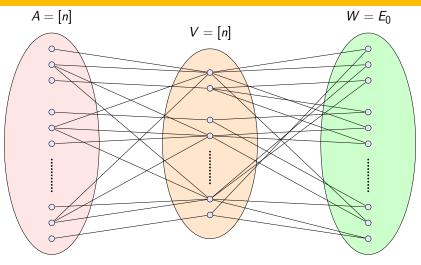
< □ > < 同 >

Sac

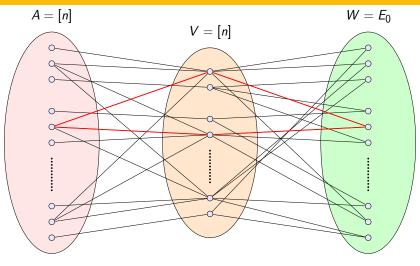
23/31

3

Threshold Graph Composition



Threshold Graph Composition



 $(w, a) \in W \times A$ is an edge $\Leftrightarrow \exists v, v' \in V$ such that a and w are common neighbors of v and v'

Karthik C. S. (NYU)

Parameterized Inapproximability

December 27, 2020 24 / 31

<□▶ < □▶ < □▶ < □▶ < □▶ = □ - つへぐ

- Let $v_1, \ldots, v_k \in V$ be vertices of k-clique in G
- Let $A' \subseteq A$ be common neighbors of v_1, \ldots, v_k in Threshold graph

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

- Let $v_1, \ldots, v_k \in V$ be vertices of k-clique in G
- Let $A' \subseteq A$ be common neighbors of v_1, \ldots, v_k in Threshold graph
- Every $a \in A'$ is also a common neighbor of $e_{v_i,v_j} \in W$ in Γ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

- Let $v_1, \ldots, v_k \in V$ be vertices of k-clique in G
- Let $A' \subseteq A$ be common neighbors of v_1, \ldots, v_k in Threshold graph
- Every $a \in A'$ is also a common neighbor of $e_{v_i,v_i} \in W$ in Γ

Completeness of Threshold Graph

Every k vertices in V has at least $n^{1/k}$ common neighbors in A

Karthik C. S. (NYU)

▲ロト ▲ 同 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

• Fix $(w_1, \ldots, w_{\binom{k}{2}}) \in W$ and let $A' \subseteq A$ be its set of common neighbors in Γ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

- Fix $(w_1, \ldots, w_{\binom{k}{2}}) \in W$ and let $A' \subseteq A$ be its set of common neighbors in Γ
- Let $V' \subseteq V$ be set of total neighbors of $(w_1, \ldots, w_{\binom{k}{2}})$ in V
- $|V'| \ge k+1$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

- Fix $(w_1, \ldots, w_{\binom{k}{2}}) \in W$ and let $A' \subseteq A$ be its set of common neighbors in Γ
- Let $V' \subseteq V$ be set of total neighbors of $(w_1, \ldots, w_{\binom{k}{2}})$ in V
- $|V'| \ge k+1$
- A' is a subset of the common neighbors of V' in Threshold graph

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

- Fix $(w_1, \ldots, w_{\binom{k}{2}}) \in W$ and let $A' \subseteq A$ be its set of common neighbors in Γ
- Let $V' \subseteq V$ be set of total neighbors of $(w_1, \ldots, w_{\binom{k}{2}})$ in V
- $|V'| \geq k+1$
- A' is a subset of the common neighbors of V' in Threshold graph

Soundness of Threshold Graph

Every k+1 vertices in V has at most (k+1)! common neighbors in A

Karthik C. S. (NYU)

Parameterized Inapproximability

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ December 27, 2020

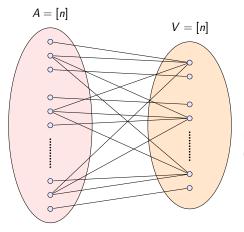
26/31

Inapproximability of One-Sided Biclique (Lin'18)

There is a FPT reduction from k-Clique instance $G([n], E_0)$ to a One-Sided Biclique instance $\Gamma = (U, W, E)$ such that

- If G has a k-clique then there are ^k₂ vertices in W which have n^{1/k} common neighbors in U
- If G has no k-clique then for every ^k₂ vertices in W they have at most (k + 1)! common neighbors in U
- $|\Gamma| = n^3$
- The reduction runs in time poly(n)

イロト (四) (三) (三) (二) (つ)



Every k vertices in V has at least $n^{1/k}$ common neighbors in A

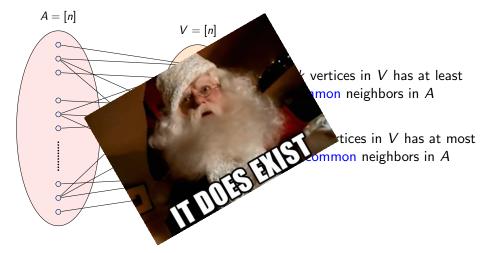
Every k+1 vertices in V has at most (k+1)! common neighbors in A

< □ > < 同 >

Sac

28 / 31

3



э

< □ > < 同 >

DQC

• Erdös-Renyi model Random graphs fail: long smooth-decaying tail

イロト イヨト イヨト

э

- Erdös-Renyi model Random graphs fail: long smooth-decaying tail
- Random graphs defined over some specific 'algebraic distribution' suffice

- Erdös-Renyi model Random graphs fail: long smooth-decaying tail
- Random graphs defined over some specific 'algebraic distribution' suffice
- Normed graphs provide semi-explicit construction

Take-away Intuition and Remarks

- Threshold Graph Composition Technique Ingridients:
 - Threshold Graph
 - Composition of Input Graph with Threshold Graph

イロト イヨト イヨト

Take-away Intuition and Remarks

- Threshold Graph Composition Technique Ingridients:
 - Threshold Graph
 - Composition of Input Graph with Threshold Graph
- Threshold Graph
 - What are the required threshold properties?
 - Does the graph with above properties exist?

• Threshold Graph Composition Technique Ingridients:

- Threshold Graph
- Composition of Input Graph with Threshold Graph
- Threshold Graph
 - What are the required threshold properties?
 - Does the graph with above properties exist?
- Tweak 'Composition of Input Graph with Threshold Graph' in order to require weaker/more realistic threshold properties

• Threshold Graph Composition Technique Ingridients:

- Threshold Graph
- Composition of Input Graph with Threshold Graph
- Threshold Graph
 - What are the required threshold properties?
 - Does the graph with above properties exist?
- Tweak 'Composition of Input Graph with Threshold Graph' in order to require weaker/more realistic threshold properties
- Start from more structured Input problem

- Set Cover
- Biclique
- Clique

- 2

590

ヘロト 人間 ト 人団 ト 人団 ト