Hardness of Approximation meets

Parameterized Complexity

Karthik C. S.
New York University

December 26, 2020

Global Outline

Day 1: The Setting

Day 2: Gap Creation
Day 3: Applications

Day 1 Outline

Part 1: Hardness of Approximation

- Hardness of Approximation in NP
- Hardness of Approximation in Parameterized Complexity

Day 1 Outline

Part 1: Hardness of Approximation

- Hardness of Approximation in NP
- Hardness of Approximation in Parameterized Complexity

Part 2: Key Problems in Parameterized Inapproximability

- MaxCover
- One-Sided Biclique

Day 1 Outline

Part 1: Hardness of Approximation

- Hardness of Approximation in NP
- Hardness of Approximation in Parameterized Complexity

Part 2: Key Problems in Parameterized Inapproximability

- MaxCover
- One-Sided Biclique

Part 3: Coding Theory

- Definition and Geometric Intuition
- Random Codes
- Algebraic Codes

Part 1

Hardness of Approximation

Hardness of Approximation

Many important optimization problems are not tractable.

Hardness of Approximation

Many important optimization problems are not tractable. A typical way to cope with the intractability of optimization problems is to design algorithms that find solutions whose cost or value is close to the optimum.

Hardness of Approximation

Many important optimization problems are not tractable. A typical way to cope with the intractability of optimization problems is to design algorithms that find solutions whose cost or value is close to the optimum. In several interesting cases, it is possible to prove that even finding good approximate solutions is as hard as finding optimal solutions.

Hardness of Approximation

Many important optimization problems are not tractable. A typical way

 to cope with the intractability of optimization problems is to design algorithms that find solutions whose cost or value is close to the optimum. In several interesting cases, it is possible to prove that even finding good approximate solutions is as hard as finding optimal solutions. The area which studies such inapproximability results is called hardness of approximation.
PCP Theorem \& Label Cover

> PCP Theorem: Bedrock of NP-Hardness of Approximation

PCP Theorem \& Label Cover

PCP Theorem: Bedrock of NP-Hardness of Approximation

$$
\pi_{i, j} \subseteq \Sigma_{U} \times \Sigma_{W}
$$

PCP Theorem \& Label Cover

PCP Theorem: Bedrock of NP-Hardness of Approximation

$$
\pi_{i, j} \subseteq \Sigma_{U} \times \Sigma_{W}
$$

$\sigma_{U}: U \rightarrow \Sigma_{U}$ is a labeling of U $\sigma_{W}: W \rightarrow \Sigma_{W}$ is a labeling of W

PCP Theorem \& Label Cover

PCP Theorem: Bedrock of NP-Hardness of Approximation

$$
\pi_{i, j} \subseteq \Sigma_{U} \times \Sigma_{W}
$$

$\sigma_{U}: U \rightarrow \Sigma_{U}$ is a labeling of U $\sigma_{W}: W \rightarrow \Sigma_{W}$ is a labeling of W
$\left(u_{i}, w_{j}\right) \in E$ is satisfied by $\left(\sigma_{U}, \sigma_{W}\right)$ if $\left(\sigma_{U}\left(u_{i}\right), \sigma_{W}\left(w_{j}\right)\right) \in \pi_{i, j}$

PCP Theorem \& Label Cover

PCP Theorem: Bedrock of NP-Hardness of Approximation

$$
\pi_{i, j} \subseteq \Sigma_{U} \times \Sigma_{W}
$$

$\sigma_{U}: U \rightarrow \Sigma_{U}$ is a labeling of U $\sigma_{W}: W \rightarrow \Sigma_{W}$ is a labeling of W
$\left(u_{i}, w_{j}\right) \in E$ is satisfied by $\left(\sigma_{U}, \sigma_{W}\right)$
if $\left(\sigma_{U}\left(u_{i}\right), \sigma_{W}\left(w_{j}\right)\right) \in \pi_{i, j}$
$\operatorname{VAL}\left(\Gamma, \sigma_{U}, \sigma_{W}\right)=$ Fraction of edges satisfied by $\left(\sigma_{U}, \sigma_{W}\right)$

PCP Theorem \& Label Cover

PCP Theorem: Bedrock of NP-Hardness of Approximation

$$
\pi_{i, j} \subseteq \Sigma_{U} \times \Sigma_{W}
$$

$\sigma_{U}: U \rightarrow \Sigma_{U}$ is a labeling of U $\sigma_{W}: W \rightarrow \Sigma_{W}$ is a labeling of W
$\left(u_{i}, w_{j}\right) \in E$ is satisfied by $\left(\sigma_{U}, \sigma_{W}\right)$
if $\left(\sigma_{U}\left(u_{i}\right), \sigma_{W}\left(w_{j}\right)\right) \in \pi_{i, j}$
$\operatorname{VAL}\left(\Gamma, \sigma_{U}, \sigma_{W}\right)=$ Fraction of edges satisfied by $\left(\sigma_{U}, \sigma_{W}\right)$

$$
\operatorname{VAL}(\Gamma)=\max _{\sigma_{U}, \sigma_{W}} \operatorname{VAL}\left(\Gamma, \sigma_{U}, \sigma_{W}\right)
$$

PCP Theorem \& Label Cover

> Determining if $\operatorname{VAL}(\Gamma)=1$ or if $\operatorname{VAL}(\Gamma) \leq 0.99$ is NP-Hard

PCP Theorem: Bedrock of NP-Hardness of Approximation

$$
\pi_{i, j} \subseteq \Sigma_{U} \times \Sigma_{W}
$$

$\sigma_{U}: U \rightarrow \Sigma_{U}$ is a labeling of U $\sigma_{W}: W \rightarrow \Sigma_{W}$ is a labeling of W
$\left(u_{i}, w_{j}\right) \in E$ is satisfied by $\left(\sigma_{U}, \sigma_{W}\right)$
if $\left(\sigma_{U}\left(u_{i}\right), \sigma_{W}\left(w_{j}\right)\right) \in \pi_{i, j}$
$\operatorname{VAL}\left(\Gamma, \sigma_{U}, \sigma_{W}\right)=$ Fraction of edges satisfied by $\left(\sigma_{U}, \sigma_{W}\right)$
$\operatorname{VAL}(\Gamma)=\max _{\sigma_{U}, \sigma_{W}} \operatorname{VAL}\left(\Gamma, \sigma_{U}, \sigma_{W}\right)$

Extended Label Cover

Extended Label Cover

$$
\Gamma_{\text {ext }}\left(U_{\text {ext }}, W_{\text {ext }}, E_{\text {ext }}\right)
$$

$$
\begin{gathered}
n \cdot\left|\Sigma_{U}\right| \text { nodes in } U \\
m \cdot\left|\Sigma_{W}\right| \text { nodes in } W \\
\left(u_{i}, \alpha\right),\left(w_{j}, \beta\right) \in E_{\text {ext }} \\
\text { iff }\left(u_{i}, w_{j}\right) \in E \text { and }(\alpha, \beta) \in \pi_{i, j}
\end{gathered}
$$

Extended Label Cover

$n \cdot\left|\Sigma_{U}\right|$ nodes in U $m \cdot\left|\Sigma_{W}\right|$ nodes in W

$$
\left(u_{i}, \alpha\right),\left(w_{j}, \beta\right) \in E_{\mathrm{ext}}
$$

iff $\left(u_{i}, w_{j}\right) \in E$ and $(\alpha, \beta) \in \pi_{i, j}$
$S \subseteq W$ is a labeling of W if $\forall i \in[k],\left|S \cap W_{i}\right|=1$
$T \subseteq U$ is a labeling of U if $\forall i \in[k],\left|T \cap U_{i}\right|=1$

Extended Label Cover

$n \cdot\left|\Sigma_{U}\right|$ nodes in U $m \cdot\left|\Sigma_{W}\right|$ nodes in W

$$
\left(u_{i}, \alpha\right),\left(w_{j}, \beta\right) \in E_{\mathrm{ext}}
$$

iff $\left(u_{i}, w_{j}\right) \in E$ and $(\alpha, \beta) \in \pi_{i, j}$
$S \subseteq W$ is a labeling of W if $\forall i \in[k],\left|S \cap W_{i}\right|=1$
$T \subseteq U$ is a labeling of U if $\forall i \in[k],\left|T \cap U_{i}\right|=1$

Parameterized Inapproximability: Motivation

- Many Optimization problems are NP-Hard

Parameterized Inapproximability: Motivation

- Many Optimization problems are NP-Hard
- Coping mechanisms
- Approximation Algorithms
- Fixed Parameter Tractability

Parameterized Inapproximability: Motivation

- Many Optimization problems are NP-Hard
- Coping mechanisms
- Approximation Algorithms
- Fixed Parameter Tractability
- Set Cover: Hard to cope!

Parameterized Inapproximability: Motivation

- Many Optimization problems are NP-Hard
- Coping mechanisms
- Approximation Algorithms
- Fixed Parameter Tractability
- Set Cover: Hard to cope!
- New direction: Fixed Parameter Approximability

Is there a $F(k) \cdot \operatorname{poly}(n)$ time algorithm that approximates to a factor $T(k)$?

Parameterized Inapproximability: Partial Summary

Parameterized Inapproximability: Recent Developments

Part 2

Key Problems in Parameterized Inapproximability

MaxCover [Chalermsook et al. 2017]

MaxCover [Chalermsook et al. 2017]

Each W_{i} is a Right Super Node Each U_{i} is a Left Super Node

MaxCover [Chalermsook et al. 2017]

Each W_{i} is a Right Super Node Each U_{i} is a Left Super Node
$S \subseteq W$ is a labeling of W if $\forall i \in[k],\left|S \cap W_{i}\right|=1$

MaxCover [Chalermsook et al. 2017]

Each W_{i} is a Right Super Node Each U_{i} is a Left Super Node
$S \subseteq W$ is a labeling of W if $\forall i \in[k],\left|S \cap W_{i}\right|=1$
S covers U_{i} if
$\exists u \in U_{i}, \forall v \in S,(u, v) \in E$

MaxCover [Chalermsook et al. 2017]

Each W_{i} is a Right Super Node Each U_{i} is a Left Super Node
$S \subseteq W$ is a labeling of W if $\forall i \in[k],\left|S \cap W_{i}\right|=1$
S covers U_{i} if
$\exists u \in U_{i}, \forall v \in S,(u, v) \in E$
$\operatorname{MaxCover}(\Gamma, S)=$ Fraction of U_{i} 's covered by S

MaxCover [Chalermsook et al. 2017]

Each W_{i} is a Right Super Node Each U_{i} is a Left Super Node
$S \subseteq W$ is a labeling of W if $\forall i \in[k],\left|S \cap W_{i}\right|=1$
S covers U_{i} if

$$
\exists u \in U_{i}, \forall v \in S,(u, v) \in E
$$

MaxCover $(\Gamma, S)=$ Fraction of U_{i} 's covered by S
$\operatorname{MaxCover}(\Gamma)=\max _{S} \operatorname{MaxCover}(\Gamma, S)$

MaxCover [Chalermsook et al. 2017]

Each W_{i} is a Right Super Node Each U_{i} is a Left Super Node
$S \subseteq W$ is a labeling of W if $\forall i \in[k],\left|S \cap W_{i}\right|=1$
S covers U_{i} if

$$
\exists u \in U_{i}, \forall v \in S,(u, v) \in E
$$

MaxCover $(\Gamma, S)=$ Fraction of U_{i} 's covered by S

$$
\operatorname{Max} \operatorname{Cover}(\Gamma)=\max _{S} \operatorname{MaxCover}(\Gamma, S)
$$

Determine if $\operatorname{MaxCover}(\Gamma)=1$ or MaxCover $(\Gamma) \leq s$

k-Clique as MaxCover

k-Clique as MaxCover

Input of k-Clique problem: $G\left([n], E_{0}\right)$

k-Clique as MaxCover

Input of k-Clique problem: $G\left([n], E_{0}\right)$

Each W_{j} is a copy of E_{0} Each U_{i} is a copy of $[n]$

k-Clique as MaxCover

Input of k-Clique problem:

$$
G\left([n], E_{0}\right)
$$

Each W_{j} is a copy of E_{0} Each U_{i} is a copy of $[n]$

For distinct i, j, j^{\prime}, introduce all edges between $W_{j, j^{\prime}}$ and U_{i}

k-Clique as MaxCover

Input of k-Clique problem:

$$
G\left([n], E_{0}\right)
$$

Each W_{j} is a copy of E_{0} Each U_{i} is a copy of $[n]$

For distinct i, j, j^{\prime}, introduce all edges between $W_{j, j^{\prime}}$ and U_{i}

Determine if $\operatorname{MaxCover}(\Gamma)=1$ or MaxCover $(\Gamma) \leq 1-1 /\binom{k}{2}$

MaxCover: Results

- W[1]-Complete if there are $F(k)$ left super nodes

MaxCover: Results

- W[1]-Complete if there are $F(k)$ left super nodes
- 1 vs. $k / n^{1 / \sqrt{k}}$ is $\mathrm{W}[1]$-Hard

MaxCover: Results

- W[1]-Complete if there are $F(k)$ left super nodes
- 1 vs. $k / n^{1 / \sqrt{k}}$ is $\mathrm{W}[1]$-Hard
- Central problem to understand parameterized inapproximability of Set Cover and Clique

MaxCover: W[1] Membership

MaxCover: W[1] Membership

Introduce all edges between:
W_{j} and $W_{j^{\prime}}$
U_{i} and $U_{i^{\prime}}$

MaxCover: W[1] Membership

Introduce all edges between:
W_{j} and $W_{j^{\prime}}$
U_{i} and $U_{i^{\prime}}$

There is a $(r+k)$ sized clique iff $\operatorname{MaxCover}(\Gamma)=1$

MaxCover: W[1] Membership

Introduce all edges between: W_{j} and $W_{j^{\prime}}$ U_{i} and $U_{i^{\prime}}$

There is a $(r+k)$ sized clique iff $\operatorname{Max} \operatorname{Cover}(\Gamma)=1$

MaxCover from ETH and SETH have $r=F(k)$

One-Sided Biclique

One-Sided Biclique

One-Sided Biclique

One-Sided Biclique vs. MaxCover

- Colored vs. Non-colored

One-Sided Biclique vs. MaxCover

- Colored vs. Non-colored
- Covering vs. Common neighbors

One-Sided Biclique vs. MaxCover

- Colored vs. Non-colored
- Covering vs. Common neighbors
- One-Sided Biclique reduces to MaxCover: Color Coding - What about the other direction?

Summary

- Hardness of Approximation meets Parameterized Complexity: New Exciting Area!
- MaxCover and One-Sided Biclique are key problems for which we have proved inapproximaiblity results.

Part 3

Coding Theory

Coding Theory: Geometric Motivation

- Consider all strings/points in $\{0,1\}^{n}$

Coding Theory: Geometric Motivation

- Consider all strings/points in $\{0,1\}^{n}$
- Consider subset of $\{0,1\}^{n}$ of even Hamming weight

Coding Theory: Geometric Motivation

- Consider all strings/points in $\{0,1\}^{n}$
- Consider subset of $\{0,1\}^{n}$ of even Hamming weight
- What is the largest subset of $\{0,1\}^{n}$ whose all pairwise Hamming distances is at least 3?

Coding Theory: Geometric Motivation

- Consider all strings/points in $\{0,1\}^{n}$
- Consider subset of $\{0,1\}^{n}$ of even Hamming weight
- What is the largest subset of $\{0,1\}^{n}$ whose all pairwise Hamming distances is at least 3?
- What is the largest subset of $\{0,1\}^{n}$ whose all pairwise Hamming distances is at least $0.9 n$?

Coding Theory: Geometric Motivation

- Consider all strings/points in $\{0,1\}^{n}$
- Consider subset of $\{0,1\}^{n}$ of even Hamming weight
- What is the largest subset of $\{0,1\}^{n}$ whose all pairwise Hamming distances is at least 3?
- What is the largest subset of $\{0,1\}^{n}$ whose all pairwise Hamming distances is at least $0.9 n$?
- What is the largest subset of $\{0,1\}^{n}$ whose all pairwise Hamming distances is at least $0.5 n$?

Coding Theory: Geometric Motivation

- Consider all strings/points in $\{0,1\}^{n}$
- Consider subset of $\{0,1\}^{n}$ of even Hamming weight
- What is the largest subset of $\{0,1\}^{n}$ whose all pairwise Hamming distances is at least 3?
- What is the largest subset of $\{0,1\}^{n}$ whose all pairwise Hamming distances is at least $0.9 n$?
- What is the largest subset of $\{0,1\}^{n}$ whose all pairwise Hamming distances is at least $0.5 n$?
- What is the largest subset of $\{0,1\}^{n}$ whose all pairwise Hamming distances is at least $0.49 n$?

Coding Theory:Definitions

- $C \subseteq\{0,1\}^{L}$

Coding Theory:Definitions

- $C \subseteq\{0,1\}^{L}$
- Distance of C :

$$
\Delta(C):=\min _{x, y \in C}\|x-y\|_{0}
$$

Coding Theory:Definitions

- $C \subseteq\{0,1\}^{L}$
- Distance of C :

$$
\Delta(C):=\min _{x, y \in C}\|x-y\|_{0}
$$

A good code: for $\rho, \delta>0,|C|=2^{\rho L}, \Delta(C)=\delta L$.

Random Codes

Random Strings are Good Codes
 For some small $\rho>0$, if we pick $2^{\rho L}$ random strings uniformly and independently then they form a code with distance at least $1 / 4$ (whp).

Random Codes

Random Strings are Good Codes

For some small $\rho>0$, if we pick $2^{\rho L}$ random strings uniformly and independently then they form a code with distance at least $1 / 4$ (whp).

- $\mathbb{E}\left[\|x-y\|_{0}\right]=L / 2$
- Chernoff: $\operatorname{Pr}\left[\|x-y\|_{0} \leq L / 4\right]=e^{-L / 100}$

Random Codes

Random Strings are Good Codes

For some small $\rho>0$, if we pick $2^{\rho L}$ random strings uniformly and independently then they form a code with distance at least $1 / 4$ (whp).

- $\mathbb{E}\left[\|x-y\|_{0}\right]=L / 2$
- Chernoff: $\operatorname{Pr}\left[\|x-y\|_{0} \leq L / 4\right]=e^{-L / 100}$
- Union Bound:

$$
\operatorname{Pr}\left[\min _{x, y \in C}\left\{\|x-y\|_{0}\right\} \leq L / 4\right]=2^{2 \rho L} e^{-L / 100}<0.001
$$

Random Codes

Random Strings are Good Codes

For some small $\rho>0$, if we pick $2^{\rho L}$ random strings uniformly and independently then they form a code with distance at least $1 / 4$ (whp).

- $\mathbb{E}\left[\|x-y\|_{0}\right]=L / 2$
- Chernoff: $\operatorname{Pr}\left[\|x-y\|_{0} \leq L / 4\right]=e^{-L / 100}$
- Union Bound:

$$
\operatorname{Pr}\left[\min _{x, y \in C}\left\{\|x-y\|_{0}\right\} \leq L / 4\right]=2^{2 \rho L} e^{-L / 100}<0.001
$$

Many Efficient Deterministic Good Codes Exist!

Coding Theory: Reed Solomon Codes

- $C \subseteq[q]^{2}$

Coding Theory: Reed Solomon Codes

- $C \subseteq[q]^{2}$
- Distance of C :

$$
\Delta(C):=\min _{x, y \in C}\|x-y\|_{0}
$$

Coding Theory: Reed Solomon Codes

- $C \subseteq[q]^{2}$
- Distance of C :

$$
\Delta(C):=\min _{x, y \in C}\|x-y\|_{0}
$$

- Singleton Bound: $|C| \leq q^{L-\Delta(C)+1}$

Coding Theory: Reed Solomon Codes

- $C \subseteq[q]^{2}$
- Distance of C :

$$
\Delta(C):=\min _{x, y \in C}\|x-y\|_{0}
$$

- Singleton Bound: $|C| \leq q^{L-\Delta(C)+1}$
- Reed Solomon Codes: All degree d univariate polynomials over \mathbb{F}_{q}

Coding Theory: Reed Solomon Codes

- $C \subseteq[q]^{L}$
- Distance of C :

$$
\Delta(C):=\min _{x, y \in C}\|x-y\|_{0}
$$

- Singleton Bound: $|C| \leq q^{L-\Delta(C)+1}$
- Reed Solomon Codes: All degree d univariate polynomials over \mathbb{F}_{q}
- $|\mathrm{RS}|=q^{d+1}$

Coding Theory: Reed Solomon Codes

- $C \subseteq[q]^{L}$
- Distance of C :

$$
\Delta(C):=\min _{x, y \in C}\|x-y\|_{0}
$$

- Singleton Bound: $|C| \leq q^{L-\Delta(C)+1}$
- Reed Solomon Codes: All degree d univariate polynomials over \mathbb{F}_{q}
- $|\mathrm{RS}|=q^{d+1}$
- $\Delta(\mathrm{RS})=q-d$ (because any degree d univariate polynomial can have at most d roots)

Coding Theory: Reed Solomon Codes

- $C \subseteq[q]^{L}$
- Distance of C :

$$
\Delta(C):=\min _{x, y \in C}\|x-y\|_{0}
$$

- Singleton Bound: $|C| \leq q^{L-\Delta(C)+1}$
- Reed Solomon Codes: All degree d univariate polynomials over \mathbb{F}_{q}
- $|\mathrm{RS}|=q^{d+1}$
- $\Delta(\mathrm{RS})=q-d$ (because any degree d univariate polynomial can have at most d roots)
- Reed Solomon Codes meet the Singleton bound!

Tomorrow's plan

- MaxCover: Gap Creation by using Codes
- One-Sided Biclique: Gap creation by using Random Graphs/Polynomials

