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Part 1
Hardness of Approximation
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Hardness of Approximation

Many important optimization problems are not tractable.

A typical way
to cope with the intractability of optimization problems is to design al-
gorithms that find solutions whose cost or value is close to the optimum.
In several interesting cases, it is possible to prove that even finding good
approximate solutions is as hard as finding optimal solutions. The area
which studies such inapproximability results is called hardness of approxi-
mation.
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PCP Theorem & Label Cover
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Determining if VAL(Γ) = 1 or

if VAL(Γ) ≤ 0.99 is NP-Hard

PCP Theorem: Bedrock of
NP-Hardness of Approximation

πi ,j ⊆ ΣU × ΣW

σU : U → ΣU is a labeling of U
σW : W → ΣW is a labeling of W

(ui ,wj)∈E is satisfied by (σU , σW )
if (σU(ui ), σW (wj)) ∈ πi ,j

VAL(Γ, σU , σW ) = Fraction of
edges satisfied by (σU , σW )

VAL(Γ) = max
σU ,σW

VAL(Γ, σU , σW )
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Extended Label Cover

u1

u2
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w1

w2

wm

Wext
Uext

Γext(Uext,Wext,Eext)

n · |ΣU | nodes in U
m · |ΣW | nodes in W

(ui , α), (wj , β) ∈ Eext

iff (ui ,wj) ∈ E and (α, β) ∈ πi ,j

S ⊆W is a labeling of W if
∀i ∈ [k], |S ∩Wi | = 1

T ⊆ U is a labeling of U if
∀i ∈ [k], |T ∩ Ui | = 1
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Parameterized Inapproximability: Motivation

Many Optimization problems are NP-Hard

Coping mechanisms

Approximation Algorithms

Fixed Parameter Tractability

Set Cover: Hard to cope!

New direction: Fixed Parameter Approximability

Is there a F (k) · poly(n) time algorithm
that approximates to a factor T (k)?

Karthik C. S. (NYU) Parameterized Inapproximability December 26, 2020 8 / 22



Parameterized Inapproximability: Motivation

Many Optimization problems are NP-Hard

Coping mechanisms

Approximation Algorithms

Fixed Parameter Tractability

Set Cover: Hard to cope!

New direction: Fixed Parameter Approximability

Is there a F (k) · poly(n) time algorithm
that approximates to a factor T (k)?

Karthik C. S. (NYU) Parameterized Inapproximability December 26, 2020 8 / 22



Parameterized Inapproximability: Motivation

Many Optimization problems are NP-Hard

Coping mechanisms

Approximation Algorithms

Fixed Parameter Tractability

Set Cover: Hard to cope!

New direction: Fixed Parameter Approximability

Is there a F (k) · poly(n) time algorithm
that approximates to a factor T (k)?

Karthik C. S. (NYU) Parameterized Inapproximability December 26, 2020 8 / 22



Parameterized Inapproximability: Motivation

Many Optimization problems are NP-Hard

Coping mechanisms

Approximation Algorithms

Fixed Parameter Tractability

Set Cover: Hard to cope!

New direction: Fixed Parameter Approximability

Is there a F (k) · poly(n) time algorithm
that approximates to a factor T (k)?

Karthik C. S. (NYU) Parameterized Inapproximability December 26, 2020 8 / 22



Parameterized Inapproximability: Partial Summary
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Part 2
Key Problems in Parameterized Inapproximability
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MaxCover [Chalermsook et al. 2017]

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U ,W ,E )

Determine if MaxCover(Γ) = 1

or MaxCover(Γ) ≤ s

Each Wi is a Right Super Node
Each Ui is a Left Super Node

S ⊆W is a labeling of W if
∀i ∈ [k], |S ∩Wi | = 1

S covers Ui if

∃u ∈ Ui , ∀v ∈ S , (u, v) ∈ E

MaxCover(Γ,S) = Fraction of
Ui ’s covered by S

MaxCover(Γ) = max
S

MaxCover(Γ, S)
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k-Clique as MaxCover

U1

U2

Uk

W1

W2

W(k2)

W
U

Γ(U ,W ,E )

Determine if MaxCover(Γ) = 1

or MaxCover(Γ) ≤ 1− 1/(k2)

Input of k-Clique problem:
G ([n],E0)

Each Wj is a copy of E0

Each Ui is a copy of [n]

For distinct i , j , j ′, introduce
all edges between Wj ,j ′ and Ui
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MaxCover: Results

W[1]-Complete if there are F (k) left super nodes

1 vs. k/n1/
√
k is W[1]-Hard

Central problem to understand parameterized inapproximability
of Set Cover and Clique
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MaxCover: W[1] Membership

U1

U2

Ur

W1

W2

Wk

W
U

Γ(U ,W ,E )

Introduce all edges between:
Wj and Wj ′

Ui and Ui ′

There is a (r + k) sized clique
iff MaxCover(Γ) = 1

MaxCover from ETH and SETH
have r = F (k)
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One-Sided Biclique

W
U

Γ(U ,W ,E )

Find k vertices in W
with most common neighbors
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One-Sided Biclique vs. MaxCover

Colored vs. Non-colored

Covering vs. Common neighbors

One-Sided Biclique reduces to MaxCover: Color Coding

What about the other direction?
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Summary

Hardness of Approximation meets Parameterized Complexity: New
Exciting Area!

MaxCover and One-Sided Biclique are key problems for which we
have proved inapproximaiblity results.
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Part 3
Coding Theory
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Coding Theory: Geometric Motivation

Consider all strings/points in {0, 1}n

Consider subset of {0, 1}n of even Hamming weight

What is the largest subset of {0, 1}n whose all pairwise Hamming
distances is at least 3?

What is the largest subset of {0, 1}n whose all pairwise Hamming
distances is at least 0.9n?

What is the largest subset of {0, 1}n whose all pairwise Hamming
distances is at least 0.5n?

What is the largest subset of {0, 1}n whose all pairwise Hamming
distances is at least 0.49n?
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Coding Theory:Definitions

C ⊆ {0, 1}L

Distance of C :

∆(C ) := min
x ,y∈C

‖x − y‖0

A good code: for ρ, δ > 0, |C | = 2ρL, ∆(C ) = δL.
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Random Codes

Random Strings are Good Codes

For some small ρ > 0, if we pick 2ρL random strings uniformly and independently
then they form a code with distance at least 1/4 (whp).

E[‖x − y‖0] = L/2

Chernoff: Pr[‖x − y‖0 ≤ L/4] = e−L/100

Union Bound:

Pr[ min
x ,y∈C

{‖x − y‖0} ≤ L/4] = 22ρLe−L/100 < 0.001

Many Efficient Deterministic Good Codes Exist!
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Coding Theory: Reed Solomon Codes

C ⊆ [q]L

Distance of C :

∆(C ) := min
x ,y∈C

‖x − y‖0

Singleton Bound: |C | ≤ qL−∆(C)+1

Reed Solomon Codes: All degree d univariate polynomials over Fq

|RS| = qd+1

∆(RS) = q − d (because any degree d univariate polynomial can
have at most d roots)

Reed Solomon Codes meet the Singleton bound!
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Tomorrow’s plan

MaxCover: Gap Creation by using Codes

One-Sided Biclique: Gap creation by using Random
Graphs/Polynomials
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